IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i2p404-425.html
   My bibliography  Save this article

Central limit theorem for functionals of a generalized self-similar Gaussian process

Author

Listed:
  • Harnett, Daniel
  • Nualart, David

Abstract

We consider a class of self-similar, continuous Gaussian processes that do not necessarily have stationary increments. We prove a version of the Breuer–Major theorem for this class, that is, subject to conditions on the covariance function, a generic functional of the process increments converges in law to a Gaussian random variable. The proof is based on the Fourth Moment Theorem. We give examples of five non-stationary processes that satisfy these conditions.

Suggested Citation

  • Harnett, Daniel & Nualart, David, 2018. "Central limit theorem for functionals of a generalized self-similar Gaussian process," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 404-425.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:2:p:404-425
    DOI: 10.1016/j.spa.2017.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915300156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2004. "Sub-fractional Brownian motion and its relation to occupation times," RePAd Working Paper Series lrsp-TRS376, Département des sciences administratives, UQO.
    2. Bojdecki, Tomasz & Gorostiza, Luis G. & Talarczyk, Anna, 2004. "Sub-fractional Brownian motion and its relation to occupation times," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 405-419, October.
    3. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    4. Russo, Francesco & Tudor, Ciprian A., 2006. "On bifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 830-856, May.
    5. Nualart, D. & Ortiz-Latorre, S., 2008. "Central limit theorems for multiple stochastic integrals and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 614-628, April.
    6. Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nualart, David & Xu, Fangjun, 2019. "Asymptotic behavior for an additive functional of two independent self-similar Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3981-4008.
    2. Daniel Harnett & Arturo Jaramillo & David Nualart, 2019. "Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1105-1144, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harnett, Daniel & Nualart, David, 2012. "Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3460-3505.
    2. Daniel Harnett & Arturo Jaramillo & David Nualart, 2019. "Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1105-1144, September.
    3. Slominski, Leszek & Ziemkiewicz, Bartosz, 2009. "On weak approximations of integrals with respect to fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 543-552, February.
    4. Skorniakov, V., 2019. "On a covariance structure of some subset of self-similar Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1903-1920.
    5. Nualart, David & Xu, Fangjun, 2019. "Asymptotic behavior for an additive functional of two independent self-similar Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3981-4008.
    6. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    7. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    8. Swanson, Jason, 2011. "Fluctuations of the empirical quantiles of independent Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 479-514, March.
    9. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    10. Bodo Herzog, 2023. "Fractional Stochastic Search Algorithms: Modelling Complex Systems via AI," Mathematics, MDPI, vol. 11(9), pages 1-11, April.
    11. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    12. Wang, Wei & Cai, Guanghui & Tao, Xiangxing, 2021. "Pricing geometric asian power options in the sub-fractional brownian motion environment," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2005. "A Long Range Dependence Stable Process and an Infinite Variance Branching System," RePAd Working Paper Series lrsp-TRS425, Département des sciences administratives, UQO.
    14. Tudor, Constantin, 2008. "Inner product spaces of integrands associated to subfractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2201-2209, October.
    15. Axel A. Araneda, 2021. "Price modelling under generalized fractional Brownian motion," Papers 2108.12042, arXiv.org, revised Nov 2023.
    16. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
    17. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    18. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2004. "Functional Limit Theorems for Occupation Time Fluctuations of Branching Systems in the Cases of Large and Critical Dimensions," RePAd Working Paper Series lrsp-TRS404, Département des sciences administratives, UQO.
    19. Wang, XiaoTian & Yang, ZiJian & Cao, PiYao & Wang, ShiLin, 2021. "The closed-form option pricing formulas under the sub-fractional Poisson volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    20. Mishura, Yuliya & Yoshidae, Nakahiro, 2022. "Divergence of an integral of a process with small ball estimate," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 1-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:2:p:404-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.