Modeling and Forecasting Realized Volatility with Multivariate Fractional Brownian Motion
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Markus Bibinger & Jun Yu & Chen Zhang, 2025. "Modeling and Forecasting Realized Volatility with Multivariate Fractional Brownian Motion," Working Papers 202528, University of Macau, Faculty of Business Administration.
References listed on IDEAS
- Fabienne Comte & Eric Renault, 1998.
"Long memory in continuous‐time stochastic volatility models,"
Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
- Comte, F. & Renault, E., 1996. "Long Memory in Continuous Time Stochastic Volatility Models," Papers 96.406, Toulouse - GREMAQ.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023.
"A GMM approach to estimate the roughness of stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "A GMM approach to estimate the roughness of stochastic volatility," Papers 2010.04610, arXiv.org, revised Apr 2022.
- Shuping Shi & Jun Yu, 2023. "Volatility Puzzle: Long Memory or Antipersistency," Management Science, INFORMS, vol. 69(7), pages 3861-3883, July.
- Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
- Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996.
"Fractionally integrated generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
- Tom Doan, "undated". "RATS programs to replicate Baillie, Bollerslev, Mikkelson FIGARCH results," Statistical Software Components RTZ00009, Boston College Department of Economics.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
- Jean-Pierre Fouque & Ruimeng Hu, 2017. "Optimal Portfolio under Fast Mean-reverting Fractional Stochastic Environment," Papers 1706.03139, arXiv.org, revised Feb 2018.
- Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
- Xiaohu Wang & Jun Yu & Chen Zhang, 2024.
"On the optimal forecast with the fractional Brownian motion,"
Quantitative Finance, Taylor & Francis Journals, vol. 24(2), pages 337-346, January.
- Wang, Xiaohu & Yu, Jun & Zhang, Chen, 2022. "On the Optimal Forecast with the Fractional Brownian Motion," Economics and Statistics Working Papers 12-2022, Singapore Management University, School of Economics.
- Andersen, Torben G & Bollerslev, Tim, 1997.
"Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns,"
Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
- Torben G. Andersen & Tim Bollerslev, 1996. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," NBER Working Papers 5752, National Bureau of Economic Research, Inc.
- Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
- Kubilius, K., 2020. "CLT for quadratic variation of Gaussian processes and its application to the estimation of the Orey index," Statistics & Probability Letters, Elsevier, vol. 165(C).
- Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006.
"Multivariate GARCH models: a survey,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
- Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," LIDAM Discussion Papers CORE 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, 2006. "Multivariate GARCH models: a survey," LIDAM Reprints CORE 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2022. "Consistent estimation for fractional stochastic volatility model under high‐frequency asymptotics," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1086-1132, October.
- Roxana Chiriac & Valeri Voev, 2011.
"Modelling and forecasting multivariate realized volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
- Roxana Chiriac & Valeri Voev, 2008. "Modelling and Forecasting Multivariate Realized Volatility," CREATES Research Papers 2008-39, Department of Economics and Business Economics, Aarhus University.
- Chiriac, Roxana & Voev, Valeri, 2008. "Modelling and forecasting multivariate realized volatility," CoFE Discussion Papers 08/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
- Paul Glasserman & Pu He, 2020. "Buy rough, sell smooth," Quantitative Finance, Taylor & Francis Journals, vol. 20(3), pages 363-378, March.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
- Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
- Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2010. "A two-sample test for comparison of long memory parameters," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2118-2136, October.
- F. Comte, 1996. "Simulation And Estimation Of Long Memory Continuous Time Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(1), pages 19-36, January.
- Josselin Garnier & Knut Solna, 2017. "Option Pricing under Fast-varying and Rough Stochastic Volatility," Papers 1707.00610, arXiv.org, revised Apr 2018.
- Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2009. "Covariance function of vector self-similar processes," Statistics & Probability Letters, Elsevier, vol. 79(23), pages 2415-2421, December.
- Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Central limit theorems," Papers 2210.01216, arXiv.org, revised Jun 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Jia & Phillips, Peter C. B. & Shi, Shuping & Yu, Jun, 2022.
"Weak Identification of Long Memory with Implications for Inference,"
Economics and Statistics Working Papers
8-2022, Singapore Management University, School of Economics.
- Jia Li & Peter C. B. Phillips & Shuping Shi & Jun Yu, 2022. "Weak Identification of Long Memory with Implications for Inference," Cowles Foundation Discussion Papers 2334, Cowles Foundation for Research in Economics, Yale University.
- Xiaohu Wang & Weilin Xiao & Jun Yu & Chen Zhang, 2025. "Maximum Likelihood Estimation of Fractional Ornstein-Uhlenbeck Process with Discretely Sampled Data," Working Papers 202527, University of Macau, Faculty of Business Administration.
- Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
- Shi, Shuping & Yu, Jun & Zhang, Chen, 2024.
"On the spectral density of fractional Ornstein–Uhlenbeck processes,"
Journal of Econometrics, Elsevier, vol. 245(1).
- Shuping Shi & Jun Yu & Chen Zhang, 2024. "On the Spectral Density of Fractional Ornstein-Uhlenbeck Processes," Working Papers 202416, University of Macau, Faculty of Business Administration.
- Manabu Asai & Michael McAleer, 2017.
"A fractionally integrated Wishart stochastic volatility model,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Documentos de Trabajo del ICAE 2013-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," KIER Working Papers 848, Kyoto University, Institute of Economic Research.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Tinbergen Institute Discussion Papers 13-025/III, Tinbergen Institute.
- Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan, 2022. "Dynamic volatility connectedness between thermal coal futures and major cryptocurrencies: Evidence from China," Energy Economics, Elsevier, vol. 112(C).
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
- Roxana Chiriac & Valeri Voev, 2011.
"Modelling and forecasting multivariate realized volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
- Roxana Chiriac & Valeri Voev, 2008. "Modelling and Forecasting Multivariate Realized Volatility," CREATES Research Papers 2008-39, Department of Economics and Business Economics, Aarhus University.
- Chiriac, Roxana & Voev, Valeri, 2008. "Modelling and forecasting multivariate realized volatility," CoFE Discussion Papers 08/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018.
"Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Post-Print hal-01982032, HAL.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
- Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
- Carsten H. Chong & Viktor Todorov, 2024. "A nonparametric test for rough volatility," Papers 2407.10659, arXiv.org.
- Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
- Jonathan Haynes & Daniel Schmitt & Lukas Grimm, 2019. "Estimating stochastic volatility: the rough side to equity returns," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 449-469, December.
- Asai, Manabu & McAleer, Michael, 2015.
"Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance,"
Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Documentos de Trabajo del ICAE 2014-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
- Gustavo Fruet Dias & Cristina M. Scherrer & Fotis Papailias, 2016. "Volatility Discovery," CREATES Research Papers 2016-07, Department of Economics and Business Economics, Aarhus University.
- Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Proietti, Tommaso, 2014.
"Exponential Smoothing, Long Memory and Volatility Prediction,"
MPRA Paper
57230, University Library of Munich, Germany.
- Tommaso Proietti, 2015. "Exponential Smoothing, Long Memory and Volatility Prediction," CREATES Research Papers 2015-51, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," CEIS Research Paper 319, Tor Vergata University, CEIS, revised 30 Jul 2014.
More about this item
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.15985. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.