Maximum Likelihood Estimation of Fractional Ornstein-Uhlenbeck Process with Discretely Sampled Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
- Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
- Carsten H. Chong & Viktor Todorov, 2024. "A nonparametric test for rough volatility," Papers 2407.10659, arXiv.org.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Xiao, Weilin & Yu, Jun, 2019.
"Asymptotic theory for rough fractional Vasicek models,"
Economics Letters, Elsevier, vol. 177(C), pages 26-29.
- Xiao, Weilin & Yu, Jun, 2018. "Asymptotic Theory for Rough Fractional Vasicek Models," Economics and Statistics Working Papers 7-2018, Singapore Management University, School of Economics.
- repec:dau:papers:123456789/7622 is not listed on IDEAS
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023.
"A GMM approach to estimate the roughness of stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "A GMM approach to estimate the roughness of stochastic volatility," Papers 2010.04610, arXiv.org, revised Apr 2022.
- Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2022. "Consistent estimation for fractional stochastic volatility model under high‐frequency asymptotics," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1086-1132, October.
- Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011.
"Bias in estimating multivariate and univariate diffusions,"
Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
- Xiaohu Wang & Peter C.B. Phillips & Jun Yu, 2011. "Bias in Estimating Multivariate and Univariate Diffusions," Cowles Foundation Discussion Papers 1778, Cowles Foundation for Research in Economics, Yale University.
- Mikkel Bennedsen & Kim Christensen & Peter Christensen, 2024. "Composite likelihood estimation of stationary Gaussian processes with a view toward stochastic volatility," Papers 2403.12653, arXiv.org.
- Xiao, Weilin & Yu, Jun, 2019.
"Asymptotic Theory For Estimating Drift Parameters In The Fractional Vasicek Model,"
Econometric Theory, Cambridge University Press, vol. 35(1), pages 198-231, February.
- Xiao, Weilin & Yu, Jun, 2017. "Asymptotic Theory for Estimating Drift Parameters in the Fractional Vasicek Model," Economics and Statistics Working Papers 8-2017, Singapore Management University, School of Economics.
- Lieberman, Offer & Rosemarin, Roy & Rousseau, Judith, 2012. "Asymptotic Theory For Maximum Likelihood Estimation Of The Memory Parameter In Stationary Gaussian Processes," Econometric Theory, Cambridge University Press, vol. 28(2), pages 457-470, April.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Shi, Shuping & Yu, Jun & Zhang, Chen, 2024.
"On the spectral density of fractional Ornstein–Uhlenbeck processes,"
Journal of Econometrics, Elsevier, vol. 245(1).
- Shuping Shi & Jun Yu & Chen Zhang, 2024. "On the Spectral Density of Fractional Ornstein-Uhlenbeck Processes," Working Papers 202416, University of Macau, Faculty of Business Administration.
- Jean‐Pierre Fouque & Ruimeng Hu, 2019. "Optimal portfolio under fractional stochastic environment," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 697-734, July.
- Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2018.
"Rough volatility: Evidence from option prices,"
IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 767-776, September.
- Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2017. "Rough volatility: evidence from option prices," Papers 1702.02777, arXiv.org.
- Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
- Paul Glasserman & Pu He, 2020. "Buy rough, sell smooth," Quantitative Finance, Taylor & Francis Journals, vol. 20(3), pages 363-378, March.
- Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
- Josselin Garnier & Knut Solna, 2017. "Option Pricing under Fast-varying and Rough Stochastic Volatility," Papers 1707.00610, arXiv.org, revised Apr 2018.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Shuping & Yu, Jun & Zhang, Chen, 2024.
"On the spectral density of fractional Ornstein–Uhlenbeck processes,"
Journal of Econometrics, Elsevier, vol. 245(1).
- Shuping Shi & Jun Yu & Chen Zhang, 2024. "On the Spectral Density of Fractional Ornstein-Uhlenbeck Processes," Working Papers 202416, University of Macau, Faculty of Business Administration.
- Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
- Markus Bibinger & Jun Yu & Chen Zhang, 2025.
"Modeling and Forecasting Realized Volatility with Multivariate Fractional Brownian Motion,"
Papers
2504.15985, arXiv.org.
- Markus Bibinger & Jun Yu & Chen Zhang, 2025. "Modeling and Forecasting Realized Volatility with Multivariate Fractional Brownian Motion," Working Papers 202528, University of Macau, Faculty of Business Administration.
- Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
- Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Florian Aichinger & Sascha Desmettre, 2025. "Pricing of geometric Asian options in the Volterra-Heston model," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
- Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Mar 2025.
- Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023.
"A GMM approach to estimate the roughness of stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "A GMM approach to estimate the roughness of stochastic volatility," Papers 2010.04610, arXiv.org, revised Apr 2022.
- Benjamin James Duthie, 2019. "Portfolio optimisation under rough Heston models," Papers 1909.02972, arXiv.org.
- Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024.
"Multivariate Rough Volatility,"
CEIS Research Paper
589, Tor Vergata University, CEIS, revised 20 Dec 2024.
- Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "Multivariate Rough Volatility," Papers 2412.14353, arXiv.org.
- Peter Christensen, 2024. "Roughness Signature Functions," Papers 2401.02819, arXiv.org.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
- Zhu, Qinwen & Diao, Xundi & Wu, Chongfeng, 2023. "Volatility forecast with the regularity modifications," Finance Research Letters, Elsevier, vol. 58(PA).
- Luca Scaffidi Domianello & Giampiero M. Gallo & Edoardo Otranto, 2024.
"Smooth and Abrupt Dynamics in Financial Volatility: The MS‐MEM‐MIDAS,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 21-43, February.
- L. Scaffidi Domianello & G.M. Gallo & E. Otranto, 2022. "Smooth and Abrupt Dynamics in Financial Volatility: the MS-MEM-MIDAS," Working Paper CRENoS 202205, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Liang Wang & Weixuan Xia, 2022.
"Power‐type derivatives for rough volatility with jumps,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
- Liang Wang & Weixuan Xia, 2020. "Power-type derivatives for rough volatility with jumps," Papers 2008.10184, arXiv.org, revised Nov 2021.
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2024.
"Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility,"
Econometrics and Statistics, Elsevier, vol. 32(C), pages 34-56.
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2021. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Discussion paper series HIAS-E-104, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018.
"Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions,"
Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
- Laura Garcia‐Jorcano & Alfonso Novales, 2021.
"Volatility specifications versus probability distributions in VaR forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
- Laura Garcia-Jorcano & Alfonso Novales, 2019. "Volatility specifications versus probability distributions in VaR forecasting," Documentos de Trabajo del ICAE 2019-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Shin, Minchul & Zhong, Molin, 2017.
"Does realized volatility help bond yield density prediction?,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 373-389.
- Minchul Shin & Molin Zhong, 2013. "Does realized volatility help bond yield density prediction?," PIER Working Paper Archive 13-064, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Minchul Shin & Molin Zhong, 2015. "Does Realized Volatility Help Bond Yield Density Prediction?," Finance and Economics Discussion Series 2015-115, Board of Governors of the Federal Reserve System (U.S.).
More about this item
Keywords
Fractional Ornstein-Uhlenbeck process; Hurst parameter; Out-of-sample forecast; Maximum likelihood; Whittle likelihood; Composite likelihood;All these keywords.
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2025-04-07 (Econometrics)
- NEP-ETS-2025-04-07 (Econometric Time Series)
- NEP-FOR-2025-04-07 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boa:wpaper:202527. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carla Leong (email available below). General contact details of provider: https://edirc.repec.org/data/fbmacmo.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.