IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i5p2134-2154.html
   My bibliography  Save this article

Particle picture interpretation of some Gaussian processes related to fractional Brownian motion

Author

Listed:
  • Bojdecki, Tomasz
  • Talarczyk, Anna

Abstract

We construct fractional Brownian motion, sub-fractional Brownian motion and negative sub-fractional Brownian motion by means of limiting procedures applied to some particle systems. These processes are obtained for full ranges of Hurst parameter.

Suggested Citation

  • Bojdecki, Tomasz & Talarczyk, Anna, 2012. "Particle picture interpretation of some Gaussian processes related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2134-2154.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:5:p:2134-2154
    DOI: 10.1016/j.spa.2012.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912000373
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deuschel, Jean-Dominique & Wang, Kongming, 1994. "Large deviations for the occupation time functional of a Poisson system of independent Brownian particles," Stochastic Processes and their Applications, Elsevier, vol. 52(2), pages 183-209, August.
    2. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 1-18, January.
    3. Enriquez, Nathanaƫl, 2004. "A simple construction of the fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 203-223, February.
    4. Bojdecki, Tomasz & Gorostiza, Luis G. & Talarczyk, Anna, 2004. "Sub-fractional Brownian motion and its relation to occupation times," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 405-419, October.
    5. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    6. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems II: Critical and large dimensions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 19-35, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:5:p:2134-2154. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.