IDEAS home Printed from
   My bibliography  Save this paper

Wavelet transform for log periodogram regression in long memory stochastic volatility model


  • Jin Lee


We consider semiparametric log periodogram regression estimation of memory parameter for the latent process in long memory stochastic volatility models. It is known that though widely used among researchers, the Geweke and Porter-Hudak (1983; GPH) LP estimator violates the Gaussian or Martingale assumption, which results in significant negative bias due to the existence of the spectrum of non-Gaussian noise. Through wavelet transform of the squared process, we effectively remove the noise spectrum around zero frequency, and obtain Gaussian-approximate spectral representation at zero frequency. We propose wavelet-based regression estimator, and derive the asymptotic mean squared error and the consistency in line with the asymptotic theory in the long memory literature. Simulation studies show that wavelet-based regression estimation is an effective way in reducing the bias, compared with the GPH estimator

Suggested Citation

  • Jin Lee, 2004. "Wavelet transform for log periodogram regression in long memory stochastic volatility model," Econometric Society 2004 Far Eastern Meetings 682, Econometric Society.
  • Handle: RePEc:ecm:feam04:682

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
    2. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
    3. Bollerslev, Tim & Wright, Jonathan H., 2000. "Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data," Journal of Econometrics, Elsevier, vol. 98(1), pages 81-106, September.
    4. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
    5. Jin Lee, 2004. "Wavelet transform for regression estimation of non-stationary fractional time series," Econometric Society 2004 North American Summer Meetings 491, Econometric Society.
    6. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    7. Shimotsu, Katsumi & Phillips, Peter C B, 2002. "Exact Local Whittle Estimation of Fractional Integration," Economics Discussion Papers 8838, University of Essex, Department of Economics.
    8. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Long memory stochastic volatility; Wavelet transform; Log periodogram regression;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:feam04:682. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.