IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1028.html
   My bibliography  Save this paper

Bootstrap Methods In Econometrics

Author

Listed:
  • James G. MacKinnon

    (Queen's University)

Abstract

There are many bootstrap methods that can be used for econometric analysis. In certain circumstances, such as regression models with independent and identically distributed error terms, appropriately chosen bootstrap methods generally work very well. However, there are many other cases, such as regression models with dependent errors, in which bootstrap methods do not always work well. This paper discusses a large number of bootstrap methods that can be useful in econometrics. Applications to hypothesis testing are emphasized, and simulation results are presented for a few illustrative cases.

Suggested Citation

  • James G. MacKinnon, 2006. "Bootstrap Methods In Econometrics," Working Paper 1028, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1028
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1028.pdf
    File Function: First version 2006
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    2. Freedman, David A & Peters, Stephen C, 1984. "Bootstrapping an Econometric Model: Some Empirical Results," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(2), pages 150-158, April.
    3. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    4. Joon Y. Park, 2003. "Bootstrap Unit Root Tests," Econometrica, Econometric Society, vol. 71(6), pages 1845-1895, November.
    5. Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, July.
    6. Donald W. K. Andrews, 2004. "the Block-Block Bootstrap: Improved Asymptotic Refinements," Econometrica, Econometric Society, vol. 72(3), pages 673-700, May.
    7. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    8. James G. MacKinnon & Jeff Racine, 2004. "Simulation-based Tests That Can Use Any Number Of Simulations," Working Paper 1027, Economics Department, Queen's University.
    9. James G. MacKinnon, 2002. "Bootstrap inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 35(4), pages 615-645, November.
    10. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    11. Emmanuel Flachaire, 2002. "Bootstrapping heteroskedasticity consistent covariance matrix estimator," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00175897, HAL.
    12. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    13. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    15. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    16. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    17. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    18. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    19. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
    20. Wolfgang Härdle & Joel Horowitz & Jens‐Peter Kreiss, 2003. "Bootstrap Methods for Time Series," International Statistical Review, International Statistical Institute, vol. 71(2), pages 435-459, August.
    21. Horowitz, Joel L. & Savin, N. E., 2000. "Empirically relevant critical values for hypothesis tests: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 95(2), pages 375-389, April.
    22. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    23. Goncalves, Silvia & White, Halbert, 2005. "Bootstrap Standard Error Estimates for Linear Regression," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 970-979, September.
    24. Horowitz, Joel L. & Lobato, I.N. & Nankervis, John C. & Savin, N.E., 2006. "Bootstrapping the Box-Pierce Q test: A robust test of uncorrelatedness," Journal of Econometrics, Elsevier, vol. 133(2), pages 841-862, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James G. MacKinnon, 2007. "Bootstrap Hypothesis Testing," Working Paper 1127, Economics Department, Queen's University.
    2. Davidson, Russell & MacKinnon, James G., 2007. "Improving the reliability of bootstrap tests with the fast double bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3259-3281, April.
    3. Trenkler, Carsten, 2009. "Bootstrapping Systems Cointegration Tests With A Prior Adjustment For Deterministic Terms," Econometric Theory, Cambridge University Press, vol. 25(1), pages 243-269, February.
    4. Torben Klarl, 2014. "Is Spatial Bootstrapping A Panacea For Valid Inference?," Journal of Regional Science, Wiley Blackwell, vol. 54(2), pages 304-312, March.
    5. Jamel Jouini, 2010. "Bootstrap methods for single structural change tests: power versus corrected size and empirical illustration," Statistical Papers, Springer, vol. 51(1), pages 85-109, January.
    6. Nikolay Gospodinov & Ye Tao, 2011. "Bootstrap Unit Root Tests in Models with GARCH(1,1) Errors," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 379-405, August.
    7. Emmanuel Flachaire, 2005. "More Efficient Tests Robust to Heteroskedasticity of Unknown Form," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 219-241.
    8. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    9. Giuseppe Cavaliere & A. M. Robert Taylor, 2009. "Bootstrap M Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 393-421.
    10. Emmanuel Flachaire, 2000. "Les méthodes du bootstrap dans les modèles de régression," Économie et Prévision, Programme National Persée, vol. 142(1), pages 183-194.
    11. Davidson, Russell & Trokić, Mirza, 2020. "The fast iterated bootstrap," Journal of Econometrics, Elsevier, vol. 218(2), pages 451-475.
    12. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    13. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    14. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.
    15. Cavaliere, Giuseppe & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2011. "Testing For Unit Roots In The Presence Of A Possible Break In Trend And Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 27(5), pages 957-991, October.
    16. Kuan-Pin Lin & Zhi-He Long & Bianling Ou, 2011. "The Size and Power of Bootstrap Tests for Spatial Dependence in a Linear Regression Model," Computational Economics, Springer;Society for Computational Economics, vol. 38(2), pages 153-171, August.
    17. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.
    18. Yang, Zhenlin, 2015. "LM tests of spatial dependence based on bootstrap critical values," Journal of Econometrics, Elsevier, vol. 185(1), pages 33-59.
    19. Godfrey, L.G., 2006. "Tests for regression models with heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2715-2733, June.
    20. A. Talha Yalta, 2016. "Bootstrap Inference of Level Relationships in the Presence of Serially Correlated Errors: A Large Scale Simulation Study and an Application in Energy Demand," Computational Economics, Springer;Society for Computational Economics, vol. 48(2), pages 339-366, August.

    More about this item

    Keywords

    bootstrap; Monte Carlo test; wild bootstrap; sieve bootstrap; moving block bootstrap;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1028. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.