IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Improving the reliability of bootstrap tests with the fast double bootstrap

  • Davidson, Russell
  • MacKinnon, James G.

Two procedures are proposed for estimating the rejection probabilities of bootstrap tests in Monte Carlo experiments without actually computing a bootstrap test for each replication. These procedures are only about twice as expensive (per replication) as estimating rejection probabilities for asymptotic tests. Then a new procedure is proposed for computing bootstrap P values that will often be more accurate than ordinary ones. This “fast double bootstrap” is closely related to the double bootstrap, but it is far less computationally demanding. Simulation results for three different cases suggest that the fast double bootstrap can be very useful in practice.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 51 (2007)
Issue (Month): 7 (April)
Pages: 3259-3281

in new window

Handle: RePEc:eee:csdana:v:51:y:2007:i:7:p:3259-3281
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Mackinnon, J.G. & Smith, A.A., 1996. "Approximate Bias Correction in Econometrics," G.R.E.Q.A.M. 96a14, Universite Aix-Marseille III.
  2. Davidson, R. & Mackinnon, J.G., 1997. "Bootstrap Tests of Nonnested Linear Regression Models," ASSET - Instituto De Economia Publica 170, ASSET (Association of Southern European Economic Theorists).
  3. Gonçalves, Sílvia & KILIAN, Lutz, 2003. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," Cahiers de recherche 01-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  4. Joon Y. Park, 2000. "Bootstrap Unit Root Tests," Econometric Society World Congress 2000 Contributed Papers 1587, Econometric Society.
  5. Russell Davidson & James G. MacKinnon, 2001. "Bootstrap Tests: How Many Bootstraps?," Working Papers 1036, Queen's University, Department of Economics.
  6. Dufour, J.M. & Khalaf, L. & Bernard, J.T. & Genest, I., 2001. "Simulation-Based Finite-Sample Tests for Heteroskedasticity and ARCH Effects," Cahiers de recherche 2001-08, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  7. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(03), pages 361-376, June.
  8. Davidson, Russell & MacKinnon, James G., 1984. "Convenient specification tests for logit and probit models," Journal of Econometrics, Elsevier, vol. 25(3), pages 241-262, July.
  9. Omtzigt Pieter & Fachin Stefano, 2002. "Bootstrapping and Bartlett corrections in the cointegrated VAR model," Economics and Quantitative Methods qf0212, Department of Economics, University of Insubria.
  10. James G. MacKinnon, 2006. "Applications of the Fast Double Bootstrap," Working Papers 1023, Queen's University, Department of Economics.
  11. Jean-FranÁois Lamarche, 2004. "The Numerical Performance of Fast Bootstrap Procedures," Computational Economics, Society for Computational Economics, vol. 23(4), pages 379-389, 06.
  12. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
  13. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  14. Davidson, James, 2006. "Alternative bootstrap procedures for testing cointegration in fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 741-777, August.
  15. Durbin, J, 1970. "Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors are Lagged Dependent Variables," Econometrica, Econometric Society, vol. 38(3), pages 410-21, May.
  16. Davidson, R. & Mackinnon, J.G., 1997. "Bootstrap Testing in Nonlinear Models," G.R.E.Q.A.M. 97a39, Universite Aix-Marseille III.
  17. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
  18. Russell Davidson & James G. MacKinnon, 2000. "Improving the Reliability of Bootstrap Tests," Working Papers 995, Queen's University, Department of Economics.
  19. James G. MacKinnon, 2002. "Bootstrap inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 35(4), pages 615-645, November.
  20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  21. Russell Davidson & James MacKinnon, 2002. "Fast Double Bootstrap Tests Of Nonnested Linear Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 419-429.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:7:p:3259-3281. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.