IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v133y2006i2p421-441.html
   My bibliography  Save this article

The power of bootstrap and asymptotic tests

Author

Listed:
  • Davidson, Russell
  • MacKinnon, James G.

Abstract

We introduce the concept of the bootstrap discrepancy, which measures the difference in rejection probabilities between a bootstrap test based on a given test statistic and that of a (usually infeasible) test based on the true distribution of the statistic. We show that the bootstrap discrepancy is of the same order of magnitude under the null hypothesis and under non-null processes described by a Pitman drift. However, complications arise in the measurement of power. If the test statistic is not an exact pivot, critical values depend on which data-generating process (DGP) is used to determine the distribution under the null hypothesis. We propose as the proper choice the DGP which minimizes the bootstrap discrepancy. We also show that, under an asymptotic independence condition, the power of both bootstrap and asymptotic tests can be estimated cheaply by simulation. The theory of the paper and the proposed simulation method are illustrated by Monte Carlo experiments using the logit model.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
  • Handle: RePEc:eee:econom:v:133:y:2006:i:2:p:421-441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(05)00121-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Davidson, Russell & MacKinnon, James G, 1987. "Implicit Alternatives and the Local Power of Test Statistics," Econometrica, Econometric Society, vol. 55(6), pages 1305-1329, November.
    2. Davidson, Russell & MacKinnon, James G., 1984. "Convenient specification tests for logit and probit models," Journal of Econometrics, Elsevier, vol. 25(3), pages 241-262, July.
    3. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(03), pages 361-376, June.
    4. Rudolf Beran, 1997. "Diagnosing Bootstrap Success," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(1), pages 1-24, March.
    5. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    6. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    7. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    8. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    9. Horowitz, Joel L., 1994. "Bootstrap-based critical values for the information matrix test," Journal of Econometrics, Elsevier, vol. 61(2), pages 395-411, April.
    10. Horowitz, Joel L. & Savin, N. E., 2000. "Empirically relevant critical values for hypothesis tests: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 95(2), pages 375-389, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:133:y:2006:i:2:p:421-441. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.