IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v7y2019i4p330-343n3.html
   My bibliography  Save this article

Bootstrap LM Tests for Spatial Dependence in Panel Data Models with Fixed Effects

Author

Listed:
  • Ou Bianling

    (School of Management Science and Engineering, Central University of Finance and Economics, Beijing, 102206, China)

  • Long Zhihe

    (School of Business Administration, South China University of Technology, Guangzhou, 510641, China)

  • Li Wenqian

    (School of Finance, Renmin University of China, Beijing, 100872, China)

Abstract

This paper applies bootstrap methods to LM tests (including LM-lag test and LM-error test) for spatial dependence in panel data models with fixed effects, and removes fixed effects based on orthogonal transformation method proposed by Lee and Yu (2010). The consistencies of LM tests and their bootstrap versions are proved, and then some asymptotic refinements of bootstrap LM tests are obtained. It shows that the convergence rate of bootstrap LM tests is O((NT)−2) and that of fast double bootstrap LM tests is O((NT)−5/2). Extensive Monte Carlo experiments suggest that, compared to aysmptotic LM tests, the size of bootstrap LM tests gets closer to the nominal level of signifiance, and the power of bootstrap LM tests is higher, especially in the cases with small spatial correlation. Moreover, when the error is not normal or with heteroskedastic, asymptotic LM tests suffer from severe size distortion, but the size of bootstrap LM tests is close to the nominal significance level. Bootstrap LM tests are superior to aysmptotic LM tests in terms of size and power.

Suggested Citation

  • Ou Bianling & Long Zhihe & Li Wenqian, 2019. "Bootstrap LM Tests for Spatial Dependence in Panel Data Models with Fixed Effects," Journal of Systems Science and Information, De Gruyter, vol. 7(4), pages 330-343, August.
  • Handle: RePEc:bpj:jossai:v:7:y:2019:i:4:p:330-343:n:3
    DOI: 10.21078/JSSI-2019-330-14
    as

    Download full text from publisher

    File URL: https://doi.org/10.21078/JSSI-2019-330-14
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.21078/JSSI-2019-330-14?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    3. Daniel C. Monchuk & Dermot J. Hayes & John A. Miranowski & Dayton M. Lambert, 2011. "Inference Based On Alternative Bootstrapping Methods In Spatial Models With An Application To County Income Growth In The United States," Journal of Regional Science, Wiley Blackwell, vol. 51(5), pages 880-896, December.
    4. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    5. Horowitz, Joel L., 1994. "Bootstrap-based critical values for the information matrix test," Journal of Econometrics, Elsevier, vol. 61(2), pages 395-411, April.
    6. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589819, May.
    7. Russell Davidson, 2017. "Diagnostics for the bootstrap and fast double bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 1021-1038, October.
    8. Yang, Zhenlin, 2015. "LM tests of spatial dependence based on bootstrap critical values," Journal of Econometrics, Elsevier, vol. 185(1), pages 33-59.
    9. Liangjun Su & Zhenlin Yang, 2008. "Asymptotics and Bootstrap for Transformed Panel Data Regressions," Development Economics Working Papers 22477, East Asian Bureau of Economic Research.
    10. Manfred M. Fischer & Arthur Getis (ed.), 2010. "Handbook of Applied Spatial Analysis," Springer Books, Springer, number 978-3-642-03647-7, September.
    11. Ahlgren, N. & Antell, J., 2008. "Bootstrap and fast double bootstrap tests of cointegration rank with financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4754-4767, June.
    12. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    13. Lung‐fei Lee & Jihai Yu, 2012. "Spatial Panels: Random Components Versus Fixed Effects," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(4), pages 1369-1412, November.
    14. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    15. Davidson, Russell & MacKinnon, James G., 2007. "Improving the reliability of bootstrap tests with the fast double bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3259-3281, April.
    16. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    17. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1, Aprilie.
    18. Kelejian, Harry H. & Robinson, Dennis P., 1998. "A suggested test for spatial autocorrelation and/or heteroskedasticity and corresponding Monte Carlo results," Regional Science and Urban Economics, Elsevier, vol. 28(4), pages 389-417, July.
    19. Russell Davidson & James MacKinnon, 2002. "Fast Double Bootstrap Tests Of Nonnested Linear Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 419-429.
    20. Jin, Fei & Lee, Lung-fei, 2015. "On the bootstrap for Moran’s I test for spatial dependence," Journal of Econometrics, Elsevier, vol. 184(2), pages 295-314.
    21. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589833, May.
    22. Anselin, Luc, 1990. "Some robust approaches to testing and estimation in spatial econometrics," Regional Science and Urban Economics, Elsevier, vol. 20(2), pages 141-163, September.
    23. Lee, Lung-fei & Yu, Jihai, 2011. "Estimation of Spatial Panels," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(1–2), pages 1-164, April.
    24. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    25. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
    26. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    27. Davidson, Russell & MacKinnon, James G., 2002. "Bootstrap J tests of nonnested linear regression models," Journal of Econometrics, Elsevier, vol. 109(1), pages 167-193, July.
    28. Peter Burridge & Bernard Fingleton, 2010. "Bootstrap Inference in Spatial Econometrics: the J-test," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 93-119.
    29. Monchuk, Daniel C. & Hayes, Dermot J. & Miranowski, John A & Lambert, Dayton M., 2011. "Inference Based on Alternative Bootstrapping Methods in Spatial Models with an Application to County Income Growth in the United States," ISU General Staff Papers 201103240700001526, Iowa State University, Department of Economics.
    30. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589826, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenlin Yang, 2013. "LM Tests of Spatial Dependence Based on Bootstrap Critical Values," Working Papers 03-2013, Singapore Management University, School of Economics.
    2. Yang, Zhenlin, 2015. "LM tests of spatial dependence based on bootstrap critical values," Journal of Econometrics, Elsevier, vol. 185(1), pages 33-59.
    3. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    4. Jin, Fei & Lee, Lung-fei, 2015. "On the bootstrap for Moran’s I test for spatial dependence," Journal of Econometrics, Elsevier, vol. 184(2), pages 295-314.
    5. Herrera Gómez, Marcos, 2017. "Fundamentos de Econometría Espacial Aplicada [Fundamentals of Applied Spatial Econometrics]," MPRA Paper 80871, University Library of Munich, Germany.
    6. repec:rri:wpaper:201303 is not listed on IDEAS
    7. Ming He & Kuan-Pin Lin, 2015. "Testing in a Random Effects Panel Data Model with Spatially Correlated Error Components and Spatially Lagged Dependent Variables," Econometrics, MDPI, vol. 3(4), pages 1-36, November.
    8. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    9. Torben Klarl, 2014. "Is Spatial Bootstrapping A Panacea For Valid Inference?," Journal of Regional Science, Wiley Blackwell, vol. 54(2), pages 304-312, March.
    10. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    11. Taşpınar, Süleyman & Doğan, Osman & Bera, Anil K., 2017. "GMM gradient tests for spatial dynamic panel data models," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 65-88.
    12. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    13. Jamel Jouini, 2006. "Bootstrap Tests in Bivariate VAR Process with Single Structural Change : Power versus Corrected Size and Empirical Illustration," Working Papers halshs-00410759, HAL.
    14. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    15. Joel L. Horowitz, 2018. "Bootstrap methods in econometrics," CeMMAP working papers CWP53/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Ren, Tongxian & Long, Zhihe & Zhang, Rengui & Chen, Qingqing, 2014. "Moran's I test of spatial panel data model — Based on bootstrap method," Economic Modelling, Elsevier, vol. 41(C), pages 9-14.
    17. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    18. J. Paul Elhorst, 2014. "Matlab Software for Spatial Panels," International Regional Science Review, , vol. 37(3), pages 389-405, July.
    19. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
    20. Debarsy, Nicolas & Ertur, Cem, 2019. "Interaction matrix selection in spatial autoregressive models with an application to growth theory," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 49-69.
    21. Jamel Jouini, 2010. "Bootstrap methods for single structural change tests: power versus corrected size and empirical illustration," Statistical Papers, Springer, vol. 51(1), pages 85-109, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:7:y:2019:i:4:p:330-343:n:3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.