IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1044.html
   My bibliography  Save this paper

Improving The Reliability Of Bootstrap Tests With The Fast Double Bootstrap

Author

Listed:
  • James G. MacKinnon

    () (Queen's University)

  • Russell Davidson

    (McGill University)

Abstract

We first propose two procedures for estimating the rejection probabilities of bootstrap tests in Monte Carlo experiments without actually computing a bootstrap test for each replication. These procedures are only about twice as expensive (per replication) as estimating rejection probabilities forasymptotic tests. We then propose a new procedure for computing bootstrap P values that will often be more accurate than ordinary ones. This "fast double bootstrap" is closely related to the double bootstrap, but it is far less computationally demanding. Simulation results for three different cases suggest that this procedure can be very useful in practice.

Suggested Citation

  • James G. MacKinnon & Russell Davidson, 2006. "Improving The Reliability Of Bootstrap Tests With The Fast Double Bootstrap," Working Paper 1044, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1044
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1044.pdf
    File Function: First version 2006
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    2. Joon Y. Park, 2003. "Bootstrap Unit Root Tests," Econometrica, Econometric Society, vol. 71(6), pages 1845-1895, November.
    3. James G. MacKinnon, 2002. "Bootstrap inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 35(4), pages 615-645, November.
    4. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    5. Davidson, Russell & MacKinnon, James G., 1984. "Convenient specification tests for logit and probit models," Journal of Econometrics, Elsevier, vol. 25(3), pages 241-262, July.
    6. Omtzigt Pieter & Fachin Stefano, 2002. "Bootstrapping and Bartlett corrections in the cointegrated VAR model," Economics and Quantitative Methods qf0212, Department of Economics, University of Insubria.
    7. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    8. James G. MacKinnon, 2006. "Applications Of The Fast Double Bootstrap," Working Paper 1023, Economics Department, Queen's University.
    9. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    10. Davidson, Russell & MacKinnon, James G, 1999. "Bootstrap Testing in Nonlinear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 487-508, May.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
    13. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    14. Davidson, Russell & MacKinnon, James G., 2002. "Bootstrap J tests of nonnested linear regression models," Journal of Econometrics, Elsevier, vol. 109(1), pages 167-193, July.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    16. Jean-FranÁois Lamarche, 2004. "The Numerical Performance of Fast Bootstrap Procedures," Computational Economics, Springer;Society for Computational Economics, vol. 23(4), pages 379-389, June.
    17. Russell Davidson & James MacKinnon, 2002. "Fast Double Bootstrap Tests Of Nonnested Linear Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 419-429.
    18. Durbin, J, 1970. "Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors are Lagged Dependent Variables," Econometrica, Econometric Society, vol. 38(3), pages 410-421, May.
    19. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    20. Davidson, James, 2006. "Alternative bootstrap procedures for testing cointegration in fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 741-777, August.
    21. James G. MacKinnon & Russell Davidson, 2000. "Improving The Reliability Of Bootstrap Tests," Working Paper 995, Economics Department, Queen's University.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    bootstrap test; double bootstrap; Monte Carlo experiment; rejection frequency;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1044. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock). General contact details of provider: http://edirc.repec.org/data/qedquca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.