IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Applications of the Fast Double Bootstrap

  • James G. MacKinnon


    (Queen's University)

The fast double bootstrap, or FDB, is a procedure for calculating bootstrap P values that is much more computationally efficient than the double bootstrap itself. In many cases, it can provide more accurate results than ordinary bootstrap tests. For the fast double bootstrap to be valid, the test statistic must be asymptotically independent of the random parts of the bootstrap data generating process. This paper presents simulation evidence on the performance of FDB tests in three cases of interest to econometricians. One of the cases involves both symmetric and equal-tail bootstrap tests, which, interestingly, can have quite different power properties. Another highlights the importance of imposing the null hypothesis on the bootstrap DGP.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: First version 2006
Download Restriction: no

Paper provided by Queen's University, Department of Economics in its series Working Papers with number 1023.

in new window

Length: 34 pages
Date of creation: Feb 2006
Date of revision:
Handle: RePEc:qed:wpaper:1023
Contact details of provider: Postal: Kingston, Ontario, K7L 3N6
Phone: (613) 533-2250
Fax: (613) 533-6668
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  2. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-29, October.
  3. Donald W.K. Andrews & Marcelo J. Moreira & James H. Stock, 2004. "Optimal Invariant Similar Tests for Instrumental Variables Regression," Cowles Foundation Discussion Papers 1476, Cowles Foundation for Research in Economics, Yale University.
  4. Davidson, James, 2006. "Alternative bootstrap procedures for testing cointegration in fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 741-777, August.
  5. Davidson, R. & Mackinnon, J. G., 1995. "Bootstrap Tests of Nonnested Linear Regression Models," G.R.E.Q.A.M. 97a25, Universite Aix-Marseille III.
  6. Omtzigt Pieter & Fachin Stefano, 2002. "Bootstrapping and Bartlett corrections in the cointegrated VAR model," Economics and Quantitative Methods qf0212, Department of Economics, University of Insubria.
  7. Davidson, Russell & MacKinnon, James G, 1981. "Several Tests for Model Specification in the Presence of Alternative Hypotheses," Econometrica, Econometric Society, vol. 49(3), pages 781-93, May.
  8. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  9. DUFOUR, Jean-Marie & KHALAF, Lynda & BERNARD, Jean-Thomas, 2001. "Simulation-Based Finite-Sample Tests for Heteroskedasticity and ARCH Effects," Cahiers de recherche 2001-08, Universite de Montreal, Departement de sciences economiques.
  10. Jean-FranÁois Lamarche, 2004. "The Numerical Performance of Fast Bootstrap Procedures," Computational Economics, Society for Computational Economics, vol. 23(4), pages 379-389, 06.
  11. Durbin, J, 1970. "Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors are Lagged Dependent Variables," Econometrica, Econometric Society, vol. 38(3), pages 410-21, May.
  12. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
  13. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(03), pages 361-376, June.
  14. Russell Davidson & James MacKinnon, 2002. "Fast Double Bootstrap Tests Of Nonnested Linear Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 419-429.
  15. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1023. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.