IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v182y2014i2p351-363.html
   My bibliography  Save this article

Tests based on t-statistics for IV regression with weak instruments

Author

Listed:
  • Mills, Benjamin
  • Moreira, Marcelo J.
  • Vilela, Lucas P.

Abstract

This paper considers tests of the parameter of an endogenous variable in an instrumental variables regression model. The focus is on one-sided conditional t-tests. Theoretical and numerical work shows that the conditional 2SLS and Fuller t-tests perform well even when instruments are weakly correlated with the endogenous variable. When the population F-statistic is as small as two, their power is reasonably close to the power envelopes for similar and non-similar tests which are invariant to rotation transformations of the instruments. This finding is surprising considering the bad performance of two-sided conditional t-tests found in Andrews et al. (2007). We show these tests have bad power because the conditional null distributions of t-statistics are asymmetric when instruments are weak. Taking this asymmetry into account, we propose two-sided tests based on t-statistics. These novel tests are approximately unbiased and can perform as well as the conditional likelihood ratio (CLR) test.

Suggested Citation

  • Mills, Benjamin & Moreira, Marcelo J. & Vilela, Lucas P., 2014. "Tests based on t-statistics for IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 182(2), pages 351-363.
  • Handle: RePEc:eee:econom:v:182:y:2014:i:2:p:351-363
    DOI: 10.1016/j.jeconom.2014.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407614001067
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:ags:stataj:116032 is not listed on IDEAS
    2. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    3. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
    4. Marcelo J. Moreira & Brian P. Poi, 2003. "Implementing tests with correct size in the simultaneous equations model," Stata Journal, StataCorp LP, vol. 3(1), pages 57-70, March.
    5. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    6. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    7. Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Admissible Invariant Similar Tests For Instrumental Variables Regression," Econometric Theory, Cambridge University Press, vol. 25(03), pages 806-818, June.
    8. Gary Chamberlain, 2007. "Decision Theory Applied to an Instrumental Variables Model," Econometrica, Econometric Society, vol. 75(3), pages 609-652, May.
    9. Andrews, Donald W.K. & Moreira, Marcelo J. & Stock, James H., 2007. "Performance of conditional Wald tests in IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 116-132, July.
    10. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    11. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 979-1014.
    12. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    13. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    14. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    15. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    16. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    17. Donald W.K. Andrews & Marcelo J. Moreira & James H. Stock, 2004. "Optimal Invariant Similar Tests for Instrumental Variables Regression," Cowles Foundation Discussion Papers 1476, Cowles Foundation for Research in Economics, Yale University.
    18. Moreira, Humberto AtaĆ­de & Moreira, Marcelo J., 2013. "Contributions to the Theory of Optimal Tests," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 747, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    19. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, vol. 158(2), pages 285-305, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isaiah Andrews & Timothy B. Armstrong, 2015. "Unbiased Instrumental Variables Estimation under Known First-Stage Sign," Cowles Foundation Discussion Papers 1984, Cowles Foundation for Research in Economics, Yale University.
    2. Donna Feir & Thomas Lemieux & Vadim Marmer, 2016. "Weak Identification in Fuzzy Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 185-196, April.

    More about this item

    Keywords

    Instrumental variables regression; Invariant tests; Optimal tests; Similar tests; Unbiased tests; Weak instruments;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:182:y:2014:i:2:p:351-363. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.