IDEAS home Printed from https://ideas.repec.org/p/fgv/epgewp/764.html
   My bibliography  Save this paper

Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors

Author

Listed:
  • Moreira, Humberto Ataíde
  • Moreira, Marcelo J.

Abstract

This paper considers two-sided tests for the parameter of an endogenous variable in an instrumental variable (IV) model with heteroskedastic and autocorrelated errors. We develop the nite-sample theory of weighted-average power (WAP) tests with normal errors and a known long-run variance. We introduce two weights which are invariant to orthogonal transformations of the instruments; e.g., changing the order in which the instruments appear. While tests using the MM1 weight can be severely biased, optimal tests based on the MM2 weight are naturally two-sided when errors are homoskedastic. We propose two boundary conditions that yield two-sided tests whether errors are homoskedastic or not. The locally unbiased (LU) condition is related to the power around the null hypothesis and is a weaker requirement than unbiasedness. The strongly unbiased (SU) condition is more restrictive than LU, but the associated WAP tests are easier to implement. Several tests are SU in nite samples or asymptotically, including tests robust to weak IV (such as the Anderson-Rubin, score, conditional quasi-likelihood ratio, and I. Andrews' (2015) PI-CLC tests) and two-sided tests which are optimal when the sample size is large and instruments are strong. We refer to the WAP-SU tests based on our weights as MM1-SU and MM2-SU tests. Dropping the restrictive assumptions of normality and known variance, the theory is shown to remain valid at the cost of asymptotic approximations. The MM2-SU test is optimal under the strong IV asymptotics, and outperforms other existing tests under the weak IV asymptotics.

Suggested Citation

  • Moreira, Humberto Ataíde & Moreira, Marcelo J., 2015. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 764, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
  • Handle: RePEc:fgv:epgewp:764
    as

    Download full text from publisher

    File URL: https://repositorio.fgv.br/bitstreams/e1c36372-9dd5-47dd-97c9-963ae1cfe186/download
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marcelo Moreira & Geert Ridder, 2019. "Efficiency loss of asymptotically efficient tests in an instrumental variables regression," CeMMAP working papers CWP03/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Graham Elliott & Ulrich K. Müller & Mark W. Watson, 2015. "Nearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis," Econometrica, Econometric Society, vol. 83, pages 771-811, March.
    3. Motohiro Yogo, 2004. "Estimating the Elasticity of Intertemporal Substitution When Instruments Are Weak," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 797-810, August.
    4. Otsu, Taisuke, 2006. "Generalized Empirical Likelihood Inference For Nonlinear And Time Series Models Under Weak Identification," Econometric Theory, Cambridge University Press, vol. 22(3), pages 513-527, June.
    5. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(4), pages 667-709, August.
    6. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    7. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    8. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    9. Andrews, Donald W.K. & Guggenberger, Patrik, 2017. "Asymptotic Size Of Kleibergen’S Lm And Conditional Lr Tests For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1046-1080, October.
    10. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    11. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    13. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, vol. 158(2), pages 285-305, October.
    14. Andrews, Donald W.K. & Moreira, Marcelo J. & Stock, James H., 2007. "Performance of conditional Wald tests in IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 116-132, July.
    15. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    16. Alexei Onatski & Marcelo Moreira J. & Marc Hallin, 2011. "Asymptotic Power of Sphericity Tests for High-Dimensional Data," Working Papers ECARES ECARES 2011-018, ULB -- Universite Libre de Bruxelles.
    17. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    18. Donald W. K. Andrews, 1986. "Complete Consistency: A Testing Analogue of Estimator Consistency," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(2), pages 263-269.
    19. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    20. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    21. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    22. Isaiah Andrews, 2016. "Conditional Linear Combination Tests for Weakly Identified Models," Econometrica, Econometric Society, vol. 84, pages 2155-2182, November.
    23. Donald W.K. Andrews & Marcelo J. Moreira & James H. Stock, 2004. "Optimal Invariant Similar Tests for Instrumental Variables Regression," Cowles Foundation Discussion Papers 1476, Cowles Foundation for Research in Economics, Yale University.
    24. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    25. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1449-1459, December.
    26. Moreira, Humberto Ataíde & Moreira, Marcelo J., 2013. "Contributions to the Theory of Optimal Tests," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 747, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    27. Mills, Benjamin & Moreira, Marcelo J. & Vilela, Lucas P., 2014. "Tests based on t-statistics for IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 182(2), pages 351-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sreevidya Ayyar & Yukitoshi Matsushita & Taisuke Otsu, 2022. "Conditional likelihood ratio test with many weak instruments," STICERD - Econometrics Paper Series 624, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    3. David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2022. "Valid t-Ratio Inference for IV," American Economic Review, American Economic Association, vol. 112(10), pages 3260-3290, October.
    4. Michael Keane & Timothy Neal, 2021. "Robust Inference for the Frisch Labor Supply Elasticity," Discussion Papers 2021-07b, School of Economics, The University of New South Wales.
    5. Marcelo Moreira & Geert Ridder, 2019. "Efficiency loss of asymptotically efficient tests in an instrumental variables regression," CeMMAP working papers CWP03/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    7. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    8. Andrew E Clark & Rong Zhu, 2024. "Taking Back Control? Quasi-Experimental Evidence on the Impact of Retirement on Locus of Control," The Economic Journal, Royal Economic Society, vol. 134(660), pages 1465-1493.
    9. Yukun Ma, 2023. "Identification-robust inference for the LATE with high-dimensional covariates," Papers 2302.09756, arXiv.org, revised Nov 2023.
    10. Crawford, Gregory S. & Deer, Lachlan & Smith, Jeremy & Sturgeon, Paul, 2017. "The Regulation of Public Service Broadcasters : Should there be more advertising on television?," Economic Research Papers 269092, University of Warwick - Department of Economics.
    11. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    12. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    13. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    14. Van de Sijpe, Nicolas & Windmeijer, Frank, 2023. "On the power of the conditional likelihood ratio and related tests for weak-instrument robust inference," Journal of Econometrics, Elsevier, vol. 235(1), pages 82-104.
    15. Keane, Michael & Neal, Timothy, 2023. "Instrument strength in IV estimation and inference: A guide to theory and practice," Journal of Econometrics, Elsevier, vol. 235(2), pages 1625-1653.
    16. Bertille Antoine & Pascal Lavergne, 2020. "Identification-Robust Nonparametric Interference in a Linear IV Model," Discussion Papers dp20-03, Department of Economics, Simon Fraser University.
    17. Sheng Wang & Hyunseung Kang, 2022. "Weak‐instrument robust tests in two‐sample summary‐data Mendelian randomization," Biometrics, The International Biometric Society, vol. 78(4), pages 1699-1713, December.
    18. Sreevidya Ayyar & Yukitoshi Matsushita & Taisuke Otsu, 2022. "Conditional Likelihood Ratio Test with Many Weak Instruments," Papers 2210.07680, arXiv.org.
    19. Purevdorj Tuvaandorj, 2021. "Robust Permutation Tests in Linear Instrumental Variables Regression," Papers 2111.13774, arXiv.org, revised Jul 2024.
    20. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    21. Silva, Felipe Bastos Gurgel, 2021. "Fiscal Deficits, Bank Credit Risk, and Loan-Loss Provisions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 56(5), pages 1537-1589, August.
    22. Isaiah Andrews & Anna Mikusheva, 2022. "Optimal Decision Rules for Weak GMM," Econometrica, Econometric Society, vol. 90(2), pages 715-748, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Humberto Moreira & Marcelo Moreira, 2016. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," CeMMAP working papers 25/16, Institute for Fiscal Studies.
    2. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    3. Marcelo Moreira & Geert Ridder, 2019. "Efficiency loss of asymptotically efficient tests in an instrumental variables regression," CeMMAP working papers CWP03/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Tetsuya Kaji, 2019. "Theory of Weak Identification in Semiparametric Models," Papers 1908.10478, arXiv.org, revised Aug 2020.
    5. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    6. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    7. Mills, Benjamin & Moreira, Marcelo J. & Vilela, Lucas P., 2014. "Tests based on t-statistics for IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 182(2), pages 351-363.
    8. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    9. Isaiah Andrews & Timothy B. Armstrong, 2017. "Unbiased instrumental variables estimation under known first‐stage sign," Quantitative Economics, Econometric Society, vol. 8(2), pages 479-503, July.
    10. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    11. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, vol. 158(2), pages 285-305, October.
    12. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    13. Kleibergen, Frank, 2007. "Generalizing weak instrument robust IV statistics towards multiple parameters, unrestricted covariance matrices and identification statistics," Journal of Econometrics, Elsevier, vol. 139(1), pages 181-216, July.
    14. Antoine, Bertille & Renault, Eric, 2020. "Testing identification strength," Journal of Econometrics, Elsevier, vol. 218(2), pages 271-293.
    15. Manu Navjeevan, 2023. "An Identification and Dimensionality Robust Test for Instrumental Variables Models," Papers 2311.14892, arXiv.org.
    16. Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
    17. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    18. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    19. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    20. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    21. Frank Kleibergen & Zhaoguo Zhan, 2021. "Double robust inference for continuous updating GMM," Papers 2105.08345, arXiv.org.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fgv:epgewp:764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/epgvfbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.