IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v8y2017i2p479-503.html

Unbiased instrumental variables estimation under known first‐stage sign

Author

Listed:
  • Isaiah Andrews
  • Timothy B. Armstrong

Abstract

We derive mean‐unbiased estimators for the structural parameter in instrumental variables models with a single endogenous regressor where the sign of one or more first‐stage coefficients is known. In the case with a single instrument, there is a unique nonrandomized unbiased estimator based on the reduced‐form and first‐stage regression estimates. For cases with multiple instruments we propose a class of unbiased estimators and show that an estimator within this class is efficient when the instruments are strong. We show numerically that unbiasedness does not come at a cost of increased dispersion in models with a single instrument: in this case the unbiased estimator is less dispersed than the two‐stage least squares estimator. Our finite‐sample results apply to normal models with known variance for the reduced‐form errors, and imply analogous results under weak‐instrument asymptotics with an unknown error distribution.

Suggested Citation

  • Isaiah Andrews & Timothy B. Armstrong, 2017. "Unbiased instrumental variables estimation under known first‐stage sign," Quantitative Economics, Econometric Society, vol. 8(2), pages 479-503, July.
  • Handle: RePEc:wly:quante:v:8:y:2017:i:2:p:479-503
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tetsuya Kaji, 2019. "Theory of Weak Identification in Semiparametric Models," Papers 1908.10478, arXiv.org, revised Aug 2020.
    2. Karthik Rajkumar, 2019. "Ridge regularization for Mean Squared Error Reduction in Regression with Weak Instruments," Papers 1904.08580, arXiv.org.
    3. Angrist, Joshua & Kolesár, Michal, 2024. "One instrument to rule them all: The bias and coverage of just-ID IV," Journal of Econometrics, Elsevier, vol. 240(2).
    4. Timothy Derdenger & Vineet Kumar, 2019. "Estimating dynamic discrete choice models with aggregate data: Properties of the inclusive value approximation," Quantitative Marketing and Economics (QME), Springer, vol. 17(4), pages 359-384, December.
    5. Matthew C. Harding & Jerry Hausman & Christopher Palmer, 2015. "Finite sample bias corrected IV estimation for weak and many instruments," CeMMAP working papers CWP41/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Sebastián Amador, 2022. "Hysteresis, endogenous growth, and monetary policy," Working Papers 348, University of California, Davis, Department of Economics.
    7. Roach, Travis & Nath, Saheli, 2023. "Counties with More Vietnam Veterans Have Higher Suicide Rates," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 53(01), April.
    8. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    9. Khan, Umair & Khalid, Umair & Farooq, Fatima, 2021. "Endogeneity Quagmire Empirical Evidence from Telecommunication Industry of Pakistan," Journal of Accounting and Finance in Emerging Economies, CSRC Publishing, Center for Sustainability Research and Consultancy Pakistan, vol. 7(4), pages 955-967, December.
    10. Bunkanwanicha, Pramuan & Di Giuli, Alberta & Salvade, Federica, 2022. "Bank CEO careers after bailouts: The effects of management turnover on bank risk," Journal of Financial Intermediation, Elsevier, vol. 52(C).
    11. Hirano, Keisuke & Porter, Jack R., 2020. "Asymptotic analysis of statistical decision rules in econometrics," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 283-354, Elsevier.
    12. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    13. Brassiolo, Pablo & Estrada, Ricardo & Fajardo, Gustavo & Vargas, Juan, 2021. "Self-Selection into corruption: Evidence from the lab," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 799-812.
    14. David M. Kaplan, 2019. "Unbiased Estimation as a Public Good," Working Papers 1911, Department of Economics, University of Missouri.
    15. Matthew C. Harding & Jerry Hausman & Christopher Palmer, 2015. "Finite sample bias corrected IV estimation for weak and many instruments," CeMMAP working papers 41/15, Institute for Fiscal Studies.
    16. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    17. Tetsuya Kaji, 2021. "Theory of Weak Identification in Semiparametric Models," Econometrica, Econometric Society, vol. 89(2), pages 733-763, March.
    18. Abadie, Alberto & Gu, Jiaying & Shen, Shu, 2024. "Instrumental variable estimation with first-stage heterogeneity," Journal of Econometrics, Elsevier, vol. 240(2).

    More about this item

    JEL classification:

    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:8:y:2017:i:2:p:479-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.