IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v184y2015i2p295-314.html
   My bibliography  Save this article

On the bootstrap for Moran’s I test for spatial dependence

Author

Listed:
  • Jin, Fei
  • Lee, Lung-fei

Abstract

This paper is concerned with the use of the bootstrap for statistics in spatial econometric models, with a focus on the test statistic for Moran’s I test for spatial dependence. We show that, for many statistics in spatial econometric models, the bootstrap can be studied based on linear–quadratic (LQ) forms of disturbances. By proving the uniform convergence of the cumulative distribution function for LQ forms to that of a normal distribution, we show that the bootstrap is generally consistent for test statistics that can be approximated by LQ forms, including Moran’s I. Possible asymptotic refinements of the bootstrap are most commonly studied using Edgeworth expansions. For spatial econometric models, we may establish asymptotic refinements of the bootstrap based on asymptotic expansions of LQ forms. When the disturbances are normal, we prove the existence of the usual Edgeworth expansions for LQ forms; when the disturbances are not normal, we establish an asymptotic expansion of LQ forms based on martingales. These results are applied to show the second order correctness of the bootstrap for Moran’s I test.

Suggested Citation

  • Jin, Fei & Lee, Lung-fei, 2015. "On the bootstrap for Moran’s I test for spatial dependence," Journal of Econometrics, Elsevier, vol. 184(2), pages 295-314.
  • Handle: RePEc:eee:econom:v:184:y:2015:i:2:p:295-314
    DOI: 10.1016/j.jeconom.2014.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407614001900
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuan-Pin Lin & Zhi-He Long & Bianling Ou, 2011. "The Size and Power of Bootstrap Tests for Spatial Dependence in a Linear Regression Model," Computational Economics, Springer;Society for Computational Economics, vol. 38(2), pages 153-171, August.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    3. Daniel C. Monchuk & Dermot J. Hayes & John A. Miranowski & Dayton M. Lambert, 2011. "Inference Based On Alternative Bootstrapping Methods In Spatial Models With An Application To County Income Growth In The United States," Journal of Regional Science, Wiley Blackwell, vol. 51(5), pages 880-896, December.
    4. Anselin, Luc, 1990. "Some robust approaches to testing and estimation in spatial econometrics," Regional Science and Urban Economics, Elsevier, vol. 20(2), pages 141-163, September.
    5. Bernard Fingleton, 2008. "A Generalized Method of Moments Estimator for a Spatial Panel Model with an Endogenous Spatial Lag and Spatial Moving Average Errors," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(1), pages 27-44.
    6. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    7. Liangjun Su & Zhenlin Yang, 2008. "Asymptotics and Bootstrap for Transformed Panel Data Regressions," Development Economics Working Papers 22477, East Asian Bureau of Economic Research.
    8. Kelejian, Harry H. & Piras, Gianfranco, 2011. "An extension of Kelejian's J-test for non-nested spatial models," Regional Science and Urban Economics, Elsevier, vol. 41(3), pages 281-292, May.
    9. Bernard Fingleton & Julie Le Gallo, 2008. "Estimating spatial models with endogenous variables, a spatial lag and spatially dependent disturbances: Finite sample properties," Papers in Regional Science, Wiley Blackwell, vol. 87(3), pages 319-339, August.
    10. Horowitz, Joel L., 2001. "The bootstrap and hypothesis tests in econometrics," Journal of Econometrics, Elsevier, vol. 100(1), pages 37-40, January.
    11. Peter Burridge & Bernard Fingleton, 2010. "Bootstrap Inference in Spatial Econometrics: the J-test," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 93-119.
    12. Can, Ayse, 1992. "Specification and estimation of hedonic housing price models," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 453-474, September.
    13. James G. MacKinnon, 2002. "Bootstrap inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 35(4), pages 615-645, November.
    14. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    15. Julie Le Gallo & Bernard Fingleton, 2008. "Estimating spatial models with endogenous variables, a spatial lag and spatially dependent disturbances : finite sample properties," Post-Print hal-00485035, HAL.
    16. Jin, Fei & Lee, Lung-fei, 2013. "Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 590-616.
    17. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228 Elsevier.
    18. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    19. Monchuk, Daniel C. & Hayes, Dermot J. & Miranowski, John A & Lambert, Dayton M., 2011. "Inference Based on Alternative Bootstrapping Methods in Spatial Models with an Application to County Income Growth in the United States," ISU General Staff Papers 201103240700001526, Iowa State University, Department of Economics.
    20. Liu, Xiaodong & Lee, Lung-fei & Bollinger, Christopher R., 2010. "An efficient GMM estimator of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 159(2), pages 303-319, December.
    21. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    22. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    23. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:empeco:v:55:y:2018:i:1:d:10.1007_s00181-018-1453-4 is not listed on IDEAS
    2. repec:eee:regeco:v:65:y:2017:i:c:p:65-88 is not listed on IDEAS
    3. Sun, Yiguo & Malikov, Emir, 2018. "Estimation and inference in functional-coefficient spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 203(2), pages 359-378.
    4. repec:eee:econom:v:208:y:2019:i:2:p:585-612 is not listed on IDEAS

    More about this item

    Keywords

    Bootstrap; Spatial; Moran’s I; Consistency; Asymptotic refinement; Linear–quadratic form;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:184:y:2015:i:2:p:295-314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.