IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v71y2003i2p435-459.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Bootstrap Methods for Time Series

Author

Listed:
  • Wolfgang Härdle
  • Joel Horowitz
  • Jens‐Peter Kreiss

Abstract

Summary The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one's data or a model estimated from the data. The methods that are available for implementing the bootstrap and the accuracy of bootstrap estimates depend on whether the data are an independent random sample or a time series. This paper is concerned with the application of the bootstrap to time‐series data when one does not have a finite‐dimensional parametric model that reduces the data generation process to independent random sampling. We review the methods that have been proposed for implementing the bootstrap in this situation and discuss the accuracy of these methods relative to that of first‐order asymptotic approximations. We argue that methods for implementing the bootstrap with time‐series data are not as well understood as methods for data that are independent random samples. Although promising bootstrap methods for time series are available, there is a considerable need for further research in the application of the bootstrap to time series. We describe some of the important unsolved problems. Résumé Le bootstrap est une méthode pour estimer la distribution d'un estimateur en rééchantillonnant ses données ou un modéle estiméà partir des données. Les méthodes disponibles pour mettre en oeuvre le bootstrap et la précision des estimateurs de bootstrap dépendent de ce que les données proviennent d'un échantillon aléatoire indépendant ou d'une série temporelle. Cet article concerne l'application du bootstrap aux données des séries temporelles quand on ne dispose pas de modéle paramétrique de dimension finie qui réduise le processus de génération des données à l'échantillonnage aléatoire indépendent. Nous examinons les méthodes qui ont été proposées pour mettre en oeuvre le bootstrap dans cette situation et discutons la precision de ces méthodes comparativement à celle des approximations asymptotiques de premier ordre. Nous montrons que les méthodes pour mettre en oeuvre le bootstrap avec les données des séries temporelles ne sont pas aussi bien comprises que les méthodes pour les données des échantillons aléatoires indépendants. Bien que des méthodes de bootstrap prometteuses pour les séries temporelles soient disponibles, il y a un besoin considérable de recherche supplémental re dans leur application. Nous décrivons quelques problémes importants non résolus.

Suggested Citation

  • Wolfgang Härdle & Joel Horowitz & Jens‐Peter Kreiss, 2003. "Bootstrap Methods for Time Series," International Statistical Review, International Statistical Institute, vol. 71(2), pages 435-459, August.
  • Handle: RePEc:bla:istatr:v:71:y:2003:i:2:p:435-459
    DOI: 10.1111/j.1751-5823.2003.tb00485.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2003.tb00485.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2003.tb00485.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Franke & J.‐P. Kreiss & E. Mammen & M. H. Neumann, 2002. "Properties of the nonparametric autoregressive bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(5), pages 555-585, September.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Joel L. Horowitz, 2003. "Bootstrap Methods for Markov Processes," Econometrica, Econometric Society, vol. 71(4), pages 1049-1082, July.
    4. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    5. M. Rajarshi, 1990. "Bootstrap in Markov-sequences based on estimates of transition density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 253-268, June.
    6. Horowitz, J., 1996. "Bootstrap Critical Values For Tests Based On The Smoothed Maximum Score Estimator," SFB 373 Discussion Papers 1996,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Wolfgang Hardle & Torsten Kleinow & Alexander Korostelev & Camille Logeay & Eckhard Platen, 2008. "Semiparametric diffusion estimation and application to a stock market index," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 81-92.
    8. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    9. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    10. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    13. Datta, S. & Mccormick, W. P., 1995. "Some Continuous Edgeworth Expansions for Markov Chains with Applications to Bootstrap," Journal of Multivariate Analysis, Elsevier, vol. 52(1), pages 83-106, January.
    14. Lahiri, Soumendra Nath, 1991. "Second order optimality of stationary bootstrap," Statistics & Probability Letters, Elsevier, vol. 11(4), pages 335-341, April.
    15. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    16. Arup Bose, 1990. "Bootstrap in moving average models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(4), pages 753-768, December.
    17. Edwin Choi & Peter Hall, 2000. "Bootstrap confidence regions computed from autoregressions of arbitrary order," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 461-477.
    18. Paparoditis, Efstathios, 1996. "Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 277-296, May.
    19. Lahiri, Soumendra Nath, 1996. "On Edgeworth Expansion and Moving Block Bootstrap for StudentizedM-Estimators in Multiple Linear Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 42-59, January.
    20. Joel L. Horowitz, 1996. "Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator," Econometrics 9603003, University Library of Munich, Germany.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    3. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    4. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    5. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    6. Joel L. Horowitz, 2018. "Bootstrap methods in econometrics," CeMMAP working papers CWP53/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Alastair R. Hall, 2013. "Generalized Method of Moments," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 14, pages 313-333, Edward Elgar Publishing.
    8. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
    9. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    10. Vilasuso, Jon, 2001. "Causality tests and conditional heteroskedasticity: : Monte Carlo evidence," Journal of Econometrics, Elsevier, vol. 101(1), pages 25-35, March.
    11. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    12. Yixiao Sun & Peter C.B. Phillips, 2008. "Optimal Bandwidth Choice for Interval Estimation in GMM Regression," Cowles Foundation Discussion Papers 1661, Cowles Foundation for Research in Economics, Yale University.
    13. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    14. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
    15. Helene Hamisultane, 2010. "Utility-based pricing of weather derivatives," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 503-525.
    16. Jose Dias Curto & Jose Castro Pinto, 2009. "The coefficient of variation asymptotic distribution in the case of non-iid random variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(1), pages 21-32.
    17. Jan M. Podivinsky & Chongcheul Cheong & Maozu Lu, 2004. "The Effect of Exchange Rate Uncertainty on US Imports from the UK: Consistent OLS Estimation with Volatility Measured by An ARCH-type Model," Econometric Society 2004 Australasian Meetings 212, Econometric Society.
    18. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    19. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    20. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:71:y:2003:i:2:p:435-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.