IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator

  • Joel L. Horowitz

    (Univ. of Iowa)

The smoothed maximum score estimator of the coefficient vector of a binary response model is consistent and asymptotically normal under weak distributional assumptions. However, the differences between the true and nominal levels of tests based on smoothed maximum score estimates can be very large in finite samples when first- order asymptotics are used to obtain critical values. This paper shows that the bootstrap provides finite-sample critical values that are more accurate than those obtained from first-order asymptotic theory. In a set of Monte Carlo experiments carried out to check numerical performance, the bootstrap essentially eliminates large finite- sample distortions of level that occur when asymptotic critical values are used.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://128.118.178.162/eps/em/papers/9603/9603003.pdf
Download Restriction: no

File URL: http://128.118.178.162/eps/em/papers/9603/9603003.ps.gz
Download Restriction: no

Paper provided by EconWPA in its series Econometrics with number 9603003.

as
in new window

Length: 48 pages
Date of creation: 07 Mar 1996
Date of revision:
Handle: RePEc:wpa:wuwpem:9603003
Note: Zipped using PKZIP v2.04, encoded using UUENCODE v5.15. Zipped file includes 1 files -- ui9602.wpa (WordPerfect 5.0, 48 pages);
Contact details of provider: Web page: http://128.118.178.162

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  2. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-37, January.
  3. Horowitz, J.L., 1995. "Bootstrap Methods in Econometrics: Theory and Numerical Performance," Working Papers 95-10, University of Iowa, Department of Economics.
  4. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-31, May.
  5. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
  6. Joel L. Horowitz, 1996. "Bootstrap Methods in Econometrics: Theory and Numerical Performance," Econometrics 9602009, EconWPA, revised 05 Mar 1996.
  7. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
  8. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
  9. J. L. HOROWITZ & Wolfgang HÄRDLE, 1994. "Direct Semiparametric Estimation of Single - Index Models with Discrete Covariates," SFB 373 Discussion Papers 1994,36, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  10. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-30, November.
  11. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-82, May.
  12. J. L. Horowitz, 1995. "Bootstrap Methods In Econometrics: Theory And Numerical Performance," SFB 373 Discussion Papers 1995,63, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:9603003. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.