IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v12y2021i3p743-777.html
   My bibliography  Save this article

Inference on semiparametric multinomial response models

Author

Listed:
  • Shakeeb Khan
  • Fu Ouyang
  • Elie Tamer

Abstract

We explore inference on regression coefficients in semiparametric multinomial response models. We consider cross‐sectional, and both static and dynamic panel settings where we focus throughout on inference under sufficient conditions for point identification. The approach to identification uses a matching insight throughout all three models coupled with variation in regressors: with cross‐section data, we match across individuals while with panel data, we match within individuals over time. Across models, we relax the Indpendence of Irrelevant Alternatives (or IIA assumption, see McFadden (1974)) and allow for arbitrary correlation in the unobservables that determine utility of various alternatives. For the cross‐sectional model, estimation is based on a localized rank objective function, analogous to that used in Abrevaya, Hausman, and Khan (2010), and presents a generalization of existing approaches. In panel data settings, rates of convergence are shown to exhibit a curse of dimensionality in the number of alternatives. The results for the dynamic panel data model generalize the work of Honoré and Kyriazidou (2000) to cover the semiparametric multinomial case. A simulation study establishes adequate finite sample properties of our new procedures. We apply our estimators to a scanner panel data set.

Suggested Citation

  • Shakeeb Khan & Fu Ouyang & Elie Tamer, 2021. "Inference on semiparametric multinomial response models," Quantitative Economics, Econometric Society, vol. 12(3), pages 743-777, July.
  • Handle: RePEc:wly:quante:v:12:y:2021:i:3:p:743-777
    DOI: 10.3982/QE1315
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/QE1315
    Download Restriction: no

    File URL: https://libkey.io/10.3982/QE1315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    2. Matias D. Cattaneo & Michael Jansson & Kenichi Nagasawa, 2020. "Bootstrap‐Based Inference for Cube Root Asymptotics," Econometrica, Econometric Society, vol. 88(5), pages 2203-2219, September.
    3. Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
    4. Lee, Lung-fei, 1995. "Semiparametric maximum likelihood estimation of polychotomous and sequential choice models," Journal of Econometrics, Elsevier, vol. 65(2), pages 381-428, February.
    5. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    6. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    7. Jain, Dipak C & Vilcassim, Naufel J & Chintagunta, Pradeep K, 1994. "A Random-Coefficients Logit Brand-Choice Model Applied to Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 317-328, July.
    8. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    9. Khan, Shakeeb & Ponomareva, Maria & Tamer, Elie, 2016. "Identification of panel data models with endogenous censoring," Journal of Econometrics, Elsevier, vol. 194(1), pages 57-75.
    10. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    11. Ekaterini Kyriazidou, 1997. "Estimation of a Panel Data Sample Selection Model," Econometrica, Econometric Society, vol. 65(6), pages 1335-1364, November.
    12. Wayne Yuan Gao & Ming Li, 2020. "Robust Semiparametric Estimation in Panel Multinomial Choice Models," Papers 2009.00085, arXiv.org.
    13. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    14. Jason Abrevaya & Jerry A. Hausman & Shakeeb Khan, 2010. "Testing for Causal Effects in a Generalized Regression Model With Endogenous Regressors," Econometrica, Econometric Society, vol. 78(6), pages 2043-2061, November.
    15. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    16. Jason Abrevaya & Jian Huang, 2005. "On the Bootstrap of the Maximum Score Estimator," Econometrica, Econometric Society, vol. 73(4), pages 1175-1204, July.
    17. Xiaoxia Shi & Matthew Shum & Wei Song, 2018. "Estimating Semi‐Parametric Panel Multinomial Choice Models Using Cyclic Monotonicity," Econometrica, Econometric Society, vol. 86(2), pages 737-761, March.
    18. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    19. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    20. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    21. Gary Chamberlain, 2010. "Binary Response Models for Panel Data: Identification and Information," Econometrica, Econometric Society, vol. 78(1), pages 159-168, January.
    22. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    23. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    24. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    25. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    26. Magnac, Thierry, 2000. "Subsidised Training and Youth Employment: Distinguishing Unobserved Heterogeneity from State Dependence in Labour Market Histories," Economic Journal, Royal Economic Society, vol. 110(466), pages 805-837, October.
    27. Songnian Chen & Shakeeb Khan & Xun Tang, 2019. "Exclusion Restrictions in Dynamic Binary Choice Panel Data Models: Comment on “Semiparametric Binary Choice Panel Data Models Without Strictly Exogenous Regressors”," Econometrica, Econometric Society, vol. 87(5), pages 1781-1785, September.
    28. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Wang, 2023. "Testing and Identifying Substitution and Complementarity Patterns," Papers 2304.00678, arXiv.org.
    2. Fu Ouyang & Thomas T. Yang, 2023. "Semiparametric Discrete Choice Models for Bundles," Papers 2306.04135, arXiv.org, revised Nov 2023.
    3. Andrew Chesher & Adam M. Rosen & Yuanqi Zhang, 2024. "Robust Analysis of Short Panels," Papers 2401.06611, arXiv.org.
    4. Andrew Chesher & Adam Rosen & Yuanqi Zhang, 2024. "Robust analysis of short panels," CeMMAP working papers 01/24, Institute for Fiscal Studies.
    5. Jiarui Liu, 2021. "Sequential Search Models: A Pairwise Maximum Rank Approach," Papers 2104.13865, arXiv.org, revised Nov 2021.
    6. Bo E. Honor'e & Chris Muris & Martin Weidner, 2021. "Dynamic Ordered Panel Logit Models," Papers 2107.03253, arXiv.org, revised Apr 2024.
    7. Aradillas-Lopez, Andres, 2024. "Inference in models with partially identified control functions," Journal of Econometrics, Elsevier, vol. 238(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shakeeb Khan & Fu Ouyang & Elie Tamer, 2020. "Inference on Semiparametric Multinomial Response Models," Discussion Papers Series 627, School of Economics, University of Queensland, Australia.
    2. Shakeeb Khan & Fu Ouyang & Elie Tamer, 2019. "Inference on Semiparametric Multinomial Response Models," Boston College Working Papers in Economics 980, Boston College Department of Economics.
    3. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    4. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    5. Jochmans, Koen, 2015. "Multiplicative-error models with sample selection," Journal of Econometrics, Elsevier, vol. 184(2), pages 315-327.
    6. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    7. repec:hal:spmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    8. repec:spo:wpmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    9. repec:spo:wpecon:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    10. Christopher R. Dobronyi & Fu Ouyang & Thomas Tao Yang, 2023. "Revisiting Panel Data Discrete Choice Models with Lagged Dependent Variables," Papers 2301.09379, arXiv.org, revised Aug 2024.
    11. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Discrete Choice Models for Bundles," Discussion Papers Series 625, School of Economics, University of Queensland, Australia.
    12. Fu Ouyang & Thomas Tao Yang, 2022. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," Papers 2202.12062, arXiv.org, revised Feb 2024.
    13. Fu Ouyang & Thomas T. Yang, 2023. "Semiparametric Discrete Choice Models for Bundles," Papers 2306.04135, arXiv.org, revised Nov 2023.
    14. Yan, Jin & Yoo, Hong Il, 2019. "Semiparametric estimation of the random utility model with rank-ordered choice data," Journal of Econometrics, Elsevier, vol. 211(2), pages 414-438.
    15. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
    16. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    17. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    18. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," ANU Working Papers in Economics and Econometrics 2020-671, Australian National University, College of Business and Economics, School of Economics.
    19. Chen, Songnian & Zhang, Hanghui, 2015. "Binary quantile regression with local polynomial smoothing," Journal of Econometrics, Elsevier, vol. 189(1), pages 24-40.
    20. Abrevaya, Jason, 2000. "Rank estimation of a generalized fixed-effects regression model," Journal of Econometrics, Elsevier, vol. 95(1), pages 1-23, March.
    21. Laura Liu & Alexandre Poirier & Ji-Liang Shiu, 2021. "Identification and Estimation of Partial Effects in Nonlinear Semiparametric Panel Models," Papers 2105.12891, arXiv.org, revised Jul 2024.
    22. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Estimation of Dynamic Binary Choice Panel Data Models," Discussion Papers Series 626, School of Economics, University of Queensland, Australia.
    23. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    24. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:12:y:2021:i:3:p:743-777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.