IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v77y2009i2p489-536.html
   My bibliography  Save this article

Robust Priors in Nonlinear Panel Data Models

Author

Listed:
  • Manuel Arellano
  • Stéphane Bonhomme

Abstract

Many approaches to estimation of panel models are based on an average or integrated likelihood that assigns weights to different values of the individual effects. Fixed effects, random effects, and Bayesian approaches all fall into this category. We provide a characterization of the class of weights (or priors) that produce estimators that are first-order unbiased. We show that such bias-reducing weights will depend on the data in general unless an orthogonal reparameterization or an essentially equivalent condition is available. Two intuitively appealing weighting schemes are discussed. We argue that asymptotically valid confidence intervals can be read from the posterior distribution of the common parameters when N and T grow at the same rate. Next, we show that random effects estimators are not bias reducing in general and we discuss important exceptions. Moreover, the bias depends on the Kullback-Leibler distance between the population distribution of the effects and its best approximation in the random effects family. Finally, we show that, in general, standard random effects estimation of marginal effects is inconsistent for large T, whereas the posterior mean of the marginal effect is large-T consistent, and we provide conditions for bias reduction. Some examples and Monte Carlo experiments illustrate the results. Copyright 2009 The Econometric Society.

Suggested Citation

  • Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
  • Handle: RePEc:ecm:emetrp:v:77:y:2009:i:2:p:489-536
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/ECTA6895
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Javier Álvarez & Manuel Arellano, 2004. "Robust Likelihood Estimation of Dynamic Panel Data Models," Working Papers wp2004_0421, CEMFI.
    2. Gary Chamberlain & Guido Imbens, 2004. "Random Effects Estimators with many Instrumental Variables," Econometrica, Econometric Society, vol. 72(1), pages 295-306, January.
    3. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    4. Manuel Arellano & Jinyong Hahn, 2005. "Understanding Bias in Nonlinear Panel Models: Some Recent Developments," Working Papers wp2005_0507, CEMFI.
    5. Hahn, Jinyong & Kuersteiner, Guido & Cho, Myeong Hyeon, 2004. "Asymptotic distribution of misspecified random effects estimator for a dynamic panel model with fixed effects when both n and T are large," Economics Letters, Elsevier, vol. 84(1), pages 117-125, July.
    6. L. Hospido, 2012. "Modelling heterogeneity and dynamics in the volatility of individual wages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 386-414, April.
    7. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.
    8. L. Wasserman, 2000. "Asymptotic inference for mixture models by using data‐dependent priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 159-180.
    9. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 225-238.
    10. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    11. Manuel Arellano, 2003. "Discrete choices with panel data," Investigaciones Economicas, Fundación SEPI, vol. 27(3), pages 423-458, September.
    12. Hahn, Jinyong, 2004. "Does Jeffrey's prior alleviate the incidental parameter problem?," Economics Letters, Elsevier, vol. 82(1), pages 135-138, January.
    13. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    14. Tony Lancaster, 2002. "Orthogonal Parameters and Panel Data," Review of Economic Studies, Oxford University Press, vol. 69(3), pages 647-666.
    15. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
    16. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    17. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    18. Hahn, Jinyong & Kuersteiner, Guido, 2011. "Bias Reduction For Dynamic Nonlinear Panel Models With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1152-1191, December.
    19. Bester, C. Alan & Hansen, Christian, 2009. "A Penalty Function Approach to Bias Reduction in Nonlinear Panel Models with Fixed Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 131-148.
    20. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    21. Tiemen Woutersen, 2002. "Robustness against Incidental Parameters," UWO Department of Economics Working Papers 20028, University of Western Ontario, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    2. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.
    3. L. Hospido, 2012. "Modelling heterogeneity and dynamics in the volatility of individual wages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 386-414, April.
    4. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    5. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    6. Fernández-Val, Iván, 2009. "Fixed effects estimation of structural parameters and marginal effects in panel probit models," Journal of Econometrics, Elsevier, vol. 150(1), pages 71-85, May.
    7. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    8. Dhaene, Geert & Sun, Yutao, 2021. "Second-order corrected likelihood for nonlinear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 220(2), pages 227-252.
    9. Geert Dhaene & Koen Jochmans, 2011. "Profile-score Adjustements for Nonlinearfixed-effect Models," Sciences Po publications info:hdl:2441/eu4vqp9ompq, Sciences Po.
    10. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09j0031f620 is not listed on IDEAS
    11. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    12. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    13. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    14. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    15. Bester, C. Alan & Hansen, Christian B., 2016. "Grouped effects estimators in fixed effects models," Journal of Econometrics, Elsevier, vol. 190(1), pages 197-208.
    16. Manuel Arellano & Jinyong Hahn, 2005. "Understanding Bias in Nonlinear Panel Models: Some Recent Developments," Working Papers wp2005_0507, CEMFI.
    17. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    18. Jin, Sainan, 2009. "Discrete choice modeling with nonstationary panels applied to exchange rate regime choice," Journal of Econometrics, Elsevier, vol. 150(2), pages 312-321, June.
    19. Ivan Fernandez-Val, 2005. "Estimation of Structural Parameters and Marginal Effects in Binary Choice Panel Data Models with Fixed Effects," Boston University - Department of Economics - Working Papers Series WP2005-38, Boston University - Department of Economics.
    20. Victor Chernozhukov & Ivan Fernandez-Val & Jinyong Hahn & Whitney K. Newey, 2008. "Identification and estimation of marginal effects in nonlinear panel models," CeMMAP working papers CWP25/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    21. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    22. Michael Lechner & Stefan Lollivier & Thierry Magnac, 2005. "Parametric Binary Choice Models," University of St. Gallen Department of Economics working paper series 2005 2005-23, Department of Economics, University of St. Gallen.

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:77:y:2009:i:2:p:489-536. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.