IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0904.1990.html
   My bibliography  Save this paper

Average and Quantile Effects in Nonseparable Panel Models

Author

Listed:
  • Victor Chernozhukov
  • Ivan Fernandez-Val
  • Jinyong Hahn
  • Whitney Newey

Abstract

Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time homogeneity conditions that are like "time is randomly assigned" or "time is an instrument." Partial identification results for average and quantile effects are given for discrete regressors, under static or dynamic conditions, in fully nonparametric and in semiparametric models, with time effects. It is shown that the usual, linear, fixed-effects estimator is not a consistent estimator of the identified average effect, and a consistent estimator is given. A simple estimator of identified quantile treatment effects is given, providing a solution to the important problem of estimating quantile treatment effects from panel data. Bounds for overall effects in static and dynamic models are given. The dynamic bounds provide a partial identification solution to the important problem of estimating the effect of state dependence in the presence of unobserved heterogeneity. The impact of $T$, the number of time periods, is shown by deriving shrinkage rates for the identified set as $T$ grows. We also consider semiparametric, discrete-choice models and find that semiparametric panel bounds can be much tighter than nonparametric bounds. Computationally-convenient methods for semiparametric models are presented. We propose a novel inference method that applies in panel data and other settings and show that it produces uniformly valid confidence regions in large samples. We give empirical illustrations.

Suggested Citation

  • Victor Chernozhukov & Ivan Fernandez-Val & Jinyong Hahn & Whitney Newey, 2009. "Average and Quantile Effects in Nonseparable Panel Models," Papers 0904.1990, arXiv.org, revised Mar 2013.
  • Handle: RePEc:arx:papers:0904.1990
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0904.1990
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fernández-Val, Iván, 2009. "Fixed effects estimation of structural parameters and marginal effects in panel probit models," Journal of Econometrics, Elsevier, vol. 150(1), pages 71-85, May.
    2. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    2. Andrew Patton, 2002. "(IAM Series No 001) On the Out-Of-Sample Importance of Skewness and Asymetric Dependence for Asset Allocation," FMG Discussion Papers dp431, Financial Markets Group.
    3. Ning Wang, 2019. "The demand for life insurance in a heterogeneous-agent life cycle economy with joint decisions," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 44(2), pages 176-206, September.
    4. Mordecai Kurz & Maurizio Motolese & Giulia Piccillo & Howei Wu, 2015. "Monetary Policy with Diverse Private Expectations," Discussion Papers 15-004, Stanford Institute for Economic Policy Research.
    5. Maria Casanova-Rivas, 2008. "Dynamic Complementarities: A Computational and Empirical Analysis of Couples' Retirement Decisions," 2008 Meeting Papers 1073, Society for Economic Dynamics.
    6. Heer, Burkhard & Polito, Vito & Wickens, Michael R., 2020. "Population aging, social security and fiscal limits," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    7. Jacques Le Cacheux & Vincent Touzé, 2002. "Les modèles d'équilibre général calculable à générations imbriquées. Enjeux, méthodes et résultats," Revue de l'OFCE, Presses de Sciences-Po, vol. 80(1), pages 87-113.
    8. Pelin Ilbas, 2006. "Optimal Monetary Policy rules for the Euro area in a DSGE framework," Working Papers of Department of Economics, Leuven ces0613, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    9. Atanas Christev, 2006. "Learning Hyperinflations," Computing in Economics and Finance 2006 475, Society for Computational Economics.
    10. Kollmann, Robert, 2003. "Monetary Policy Rules in an Interdependent World," CEPR Discussion Papers 4012, C.E.P.R. Discussion Papers.
    11. Harrison, Glenn W., 2008. "Neuroeconomics: A Critical Reconsideration," Economics and Philosophy, Cambridge University Press, vol. 24(3), pages 303-344, November.
    12. Borovička, Jaroslav & Hansen, Lars Peter, 2014. "Examining macroeconomic models through the lens of asset pricing," Journal of Econometrics, Elsevier, vol. 183(1), pages 67-90.
    13. Rasmus Lentz, 2009. "Optimal Unemployment Insurance in an Estimated Job Search Model with Savings," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(1), pages 37-57, January.
    14. Mewael F. Tesfaselassie & Eric Schaling & Sylvester Eijffinger, 2011. "Learning about the Term Structure and Optimal Rules for Inflation Targeting," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(8), pages 1685-1706, December.
    15. Frölich, Markus & Lechner, Michael, 2010. "Exploiting Regional Treatment Intensity for the Evaluation of Labor Market Policies," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1014-1029.
    16. Grant, Darren, 2009. "Physician financial incentives and cesarean delivery: New conclusions from the healthcare cost and utilization project," Journal of Health Economics, Elsevier, vol. 28(1), pages 244-250, January.
    17. Avagyan, Vardan & Esteban-Bravo, Mercedes & Vidal-Sanz, Jose M., 2016. "Riding successive product diffusion waves. Building a tsunami via upgrade-rebate programs," International Journal of Research in Marketing, Elsevier, vol. 33(4), pages 780-796.
    18. Röhrs, Sigrid & Winter, Christoph, 2017. "Reducing government debt in the presence of inequality," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 1-20.
    19. Gomme, Paul & Klein, Paul, 2011. "Second-order approximation of dynamic models without the use of tensors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 604-615, April.
    20. Julien Albertini & Hong Lan, 2016. "The importance of time-varying parameters in new Keynesian models with zero lower bound," SFB 649 Discussion Papers SFB649DP2016-013, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0904.1990. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.