IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/21034.html
   My bibliography  Save this paper

Quantile Regression with Panel Data

Author

Listed:
  • Bryan S. Graham
  • Jinyong Hahn
  • Alexandre Poirier
  • James L. Powell

Abstract

We propose a generalization of the linear quantile regression model to accommodate possibilities afforded by panel data. Specifically, we extend the correlated random coefficients representation of linear quantile regression (e.g., Koenker, 2005; Section 2.6). We show that panel data allows the econometrician to (i) introduce dependence between the regressors and the random coefficients and (ii) weaken the assumption of comonotonicity across them (i.e., to enrich the structure of allowable dependence between different coefficients). We adopt a “fixed effects” approach, leaving any dependence between the regressors and the random coefficients unmodelled. We motivate different notions of quantile partial effects in our model and study their identification. For the case of discretely-valued covariates we present analog estimators and characterize their large sample properties. When the number of time periods (T) exceeds the number of random coefficients (P), identification is regular, and our estimates are √N-consistent. When T=P, our identification results make special use of the subpopulation of stayers – units whose regressor values change little over time – in a way which builds on the approach of Graham and Powell (2012). In this just-identified case we study asymptotic sequences which allow the frequency of stayers in the population to shrink with the sample size. One purpose of these “discrete bandwidth asymptotics” is to approximate settings where covariates are continuously-valued and, as such, there is only an infinitesimal fraction of exact stayers, while keeping the convenience of an analysis based on discrete covariates. When the mass of stayers shrinks with N, identification is irregular and our estimates converge at a slower than √N rate, but continue to have limiting normal distributions. We apply our methods to study the effects of collective bargaining coverage on earnings using the National Longitudinal Survey of Youth 1979 (NLSY79). Consistent with prior work (e.g., Chamberlain, 1982; Vella and Verbeek, 1998), we find that using panel data to control for unobserved worker heteroegeneity results in sharply lower estimates of union wage premia. We estimate a median union wage premium of about 9 percent, but with, in a more novel finding, substantial heterogeneity across workers. The 0.1 quantile of union effects is insignificantly different from zero, whereas the 0.9 quantile effect is of over 30 percent. Our empirical analysis further suggests that, on net, unions have an equalizing effect on the distribution of wages.

Suggested Citation

  • Bryan S. Graham & Jinyong Hahn & Alexandre Poirier & James L. Powell, 2015. "Quantile Regression with Panel Data," NBER Working Papers 21034, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:21034
    Note: LS TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w21034.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    2. Patrick Kline & Andres Santos, 2013. "Sensitivity to missing data assumptions: Theory and an evaluation of the U.S. wage structure," Quantitative Economics, Econometric Society, vol. 4(2), pages 231-267, July.
    3. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, January.
    4. Thomas Lemieux, 2006. "Postsecondary Education and Increasing Wage Inequality," American Economic Review, American Economic Association, vol. 96(2), pages 195-199, May.
    5. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    6. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    7. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    8. Abrevaya, Jason & Dahl, Christian M, 2008. "The Effects of Birth Inputs on Birthweight," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 379-397.
    9. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    10. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    11. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    12. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, January.
    13. Bryan S. Graham & James L. Powell, 2012. "Identification and Estimation of Average Partial Effects in “Irregular” Correlated Random Coefficient Panel Data Models," Econometrica, Econometric Society, vol. 80(5), pages 2105-2152, September.
    14. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    15. Thomas MaCurdy & Thomas Mroz & R. Mark Gritz, 1998. "An Evaluation of the National Longitudinal Survey on Youth," Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 345-436.
    16. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 987-1020.
    17. Buchinsky, Moshe, 1994. "Changes in the U.S. Wage Structure 1963-1987: Application of Quantile Regression," Econometrica, Econometric Society, vol. 62(2), pages 405-458, March.
    18. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    19. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    20. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    21. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    22. Manuel Arellano & Stèphane Bonhomme, 2011. "Nonlinear Panel Data Analysis," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 395-424, September.
    23. Patrick Bajari & Jinyong Hahn & Han Hong & Geert Ridder, 2011. "A Note On Semiparametric Estimation Of Finite Mixtures Of Discrete Choice Models With Application To Game Theoretic Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(3), pages 807-824, August.
    24. Rosen, Adam M., 2012. "Set identification via quantile restrictions in short panels," Journal of Econometrics, Elsevier, vol. 166(1), pages 127-137.
    25. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    26. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
    27. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    28. David Card & Thomas Lemieux & W. Craig Riddell, 2004. "Unions and Wage Inequality," Journal of Labor Research, Transaction Publishers, vol. 25(4), pages 519-562, October.
    29. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    30. George Jakubson, 1991. "Estimation and Testing of the Union Wage Effect Using Panel Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(5), pages 971-991.
    31. Francis Vella & Marno Verbeek, 1998. "Whose wages do unions raise? A dynamic model of unionism and wage rate determination for young men," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(2), pages 163-183.
    32. Jason Abrevaya, 2001. "The effects of demographics and maternal behavior on the distribution of birth outcomes," Empirical Economics, Springer, vol. 26(1), pages 247-257.
    33. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    34. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge E. Galán, 2020. "The benefits are at the tail: uncovering the impact of macroprudential policy on growth-at-risk," Working Papers 2007, Banco de España.
    2. Pietro Santoleri, 2020. "Innovation and job creation in (high-growth) new firms," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(3), pages 731-756.
    3. Sandra Kendo & Josephine Tchakounte, 2022. "Impact of asset size on performance and outreach using panel quantile regression with non-additive fixed effects," Empirical Economics, Springer, vol. 62(1), pages 65-92, January.
    4. George S. Atsalakis & Elie Bouri & Fotios Pasiouras, 2021. "Natural disasters and economic growth: a quantile on quantile approach," Annals of Operations Research, Springer, vol. 306(1), pages 83-109, November.
    5. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    6. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Papers 1708.08622, arXiv.org.
    7. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    8. Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data estimation via quantile regressions," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
    9. Kendo, Sandra & Tchakounte, Josephine, 2022. "The drivers of the financial integration of microfinance Institutions: Do financial development, agency costs and microfinance performance matter?," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 128-142.
    10. Yanay Farja & Avi Tillman & Ori Zax, 2022. "The Gender Gap: Looking at the Entire Distribution," Journal of Interdisciplinary Economics, , vol. 34(1), pages 51-68, January.
    11. Sandra Kendo & Josephine Tchakounte, 2022. "The drivers of the financial integration of microfinance Institutions: Do financial development, agency costs and microfinance performance matter?," Post-Print hal-04529938, HAL.
    12. Kusiyah Kusiyah & Mansoor Mushtaq & Shabbir Ahmed & Ansar Abbas & Mochammad Fahlevi, 2024. "Impact of Urbanization on Environmental Eminence: Moderating Role of Renewable Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 244-257, March.
    13. Borsati, Mattia & Nocera, Silvio & Percoco, Marco, 2022. "Questioning the spatial association between the initial spread of COVID-19 and transit usage in Italy," Research in Transportation Economics, Elsevier, vol. 95(C).
    14. Klayme, Tania & Gokmenoglu, Korhan K. & Rustamov, Bezhan, 2023. "Economic policy uncertainty, COVID-19 and corporate investment: Evidence from the gold mining industry," Resources Policy, Elsevier, vol. 85(PA).
    15. Roula Inglesi-Lotz & Anna Maria Oosthuizen & Sharifa Jumaniyazova & Bekhzod Kuziboev & Jie Liu, 2024. "Exploring the Impact of Women Governance on CO2 Emissions in the European Union and Central Asia," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 639-646, May.
    16. Talan, Amogh & Rao, Amar & Sharma, Gagan Deep & Apostu, Simona-Andreea & Abbas, Shujaat, 2023. "Transition towards clean energy consumption in G7: Can financial sector, ICT and democracy help?," Resources Policy, Elsevier, vol. 82(C).
    17. Wei Feng & Yanrui Wu & Yue Fu, 2021. "Dialect Diversity and Foreign Direct Investment in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 29(2), pages 49-72, March.
    18. Yuya Sasaki & Takuya Ura, 2021. "Slow Movers in Panel Data," Papers 2110.12041, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    2. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    3. Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data estimation via quantile regressions," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
    4. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    5. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    6. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    7. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    8. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    9. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    10. Xin Liu, 2024. "A quantile-based nonadditive fixed effects model," Papers 2405.03826, arXiv.org.
    11. Valentin Verdier, 2020. "Average treatment effects for stayers with correlated random coefficient models of panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 917-939, November.
    12. Ghanem, Dalia, 2017. "Testing identifying assumptions in nonseparable panel data models," Journal of Econometrics, Elsevier, vol. 197(2), pages 202-217.
    13. Takuya Ishihara, 2020. "Panel Data Quantile Regression for Treatment Effect Models," Papers 2001.04324, arXiv.org, revised Nov 2021.
    14. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    15. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    16. Khan, Shakeeb & Ponomareva, Maria & Tamer, Elie, 2016. "Identification of panel data models with endogenous censoring," Journal of Econometrics, Elsevier, vol. 194(1), pages 57-75.
    17. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    18. Irene Botosaru & Chris Muris, 2022. "Identification of time-varying counterfactual parameters in nonlinear panel models," Papers 2212.09193, arXiv.org, revised Nov 2023.
    19. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    20. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:21034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.