IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns

Listed author(s):
  • Frantisek Cech
  • Jozef Barunik

This paper investigates how to measure common market risk factors using newly proposed Panel Quantile Regression Model for Returns. By exploring the fact that volatility crosses all quantiles of the return distribution and using penalized fixed effects estimator we are able to control for otherwise unobserved heterogeneity among financial assets. Direct benefits of the proposed approach are revealed in the portfolio Value-at-Risk forecasting application, where our modeling strategy performs significantly better than several benchmark models according to both statistical and economic comparison. In particular Panel Quantile Regression Model for Returns consistently outperforms all the competitors in the 5\% and 10\% quantiles. Sound statistical performance translates directly into economic gains which is demonstrated in the Global Minimum Value-at-Risk Portfolio and Markowitz-like comparison. Overall results of our research are important for correct identification of the sources of systemic risk, and are particularly attractive for high dimensional applications.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/1708.08622
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 1708.08622.

as
in new window

Length:
Date of creation: Aug 2017
Handle: RePEc:arx:papers:1708.08622
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Chambers, Christopher P., 2007. "Ordinal aggregation and quantiles," Journal of Economic Theory, Elsevier, vol. 137(1), pages 416-431, November.
  2. Manski, C.F., 1988. "Ordinal Utility Models Of Decision Making Under Uncertainty," Working papers 363, Wisconsin Madison - Social Systems.
  3. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
  4. Neil Foster-McGregor & Anders Isaksson & Florian Kaulich, 2014. "Importing, exporting and performance in sub-Saharan African manufacturing firms," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 150(2), pages 309-336, May.
  5. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  6. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 477-492.
  7. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008. "Quantile forecasts of daily exchange rate returns from forecasts of realized volatility," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
  8. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
  9. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
  10. Lorenzo Cappiello & Bruno Gérard & Arjan Kadareja & Simone Manganelli, 2014. "Measuring Comovements by Regression Quantiles," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 12(4), pages 645-678.
  11. Christian M. Dahl & Daniel le Maire & Jakob R. Munch, 2013. "Wage Dispersion and Decentralization of Wage Bargaining," Journal of Labor Economics, University of Chicago Press, vol. 31(3), pages 501-533.
  12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  13. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  14. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
  15. David Powell & Joachim Wagner, 2014. "The exporter productivity premium along the productivity distribution: evidence from quantile regression with nonadditive firm fixed effects," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 150(4), pages 763-785, November.
  16. Covas, Francisco B. & Rump, Ben & Zakrajšek, Egon, 2014. "Stress-testing US bank holding companies: A dynamic panel quantile regression approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 691-713.
  17. Baur, Dirk G. & Dimpfl, Thomas & Jung, Robert C., 2012. "Stock return autocorrelations revisited: A quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 254-265.
  18. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
  19. Giovannetti, Bruno C., 2013. "Asset pricing under quantile utility maximization," Review of Financial Economics, Elsevier, vol. 22(4), pages 169-179.
  20. Damette, Olivier & Delacote, Philippe, 2012. "On the economic factors of deforestation: What can we learn from quantile analysis?," Economic Modelling, Elsevier, vol. 29(6), pages 2427-2434.
  21. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
  22. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
  23. Galvao, Antonio F. & Wang, Liang, 2015. "Efficient minimum distance estimator for quantile regression fixed effects panel data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 1-26.
  24. Lamarche, Carlos, 2011. "Measuring the incentives to learn in Colombia using new quantile regression approaches," Journal of Development Economics, Elsevier, vol. 96(2), pages 278-288, November.
  25. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
  26. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
  27. Gilles Dufrenot & Valerie Mignon & Charalambos Tsangarides, 2010. "The trade-growth nexus in the developing countries: a quantile regression approach," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 146(4), pages 731-761, December.
  28. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
  29. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
  30. Antonio F. Galvao & Gabriel Montes-Rojas, 2015. "On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study," Econometrics, MDPI, Open Access Journal, vol. 3(3), pages 1-13, September.
  31. Galvao Jr., Antonio F., 2011. "Quantile regression for dynamic panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 164(1), pages 142-157, September.
  32. Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
  33. Harding, Matthew & Lamarche, Carlos, 2009. "A quantile regression approach for estimating panel data models using instrumental variables," Economics Letters, Elsevier, vol. 104(3), pages 133-135, September.
  34. Marzena Rostek, 2010. "Quantile Maximization in Decision Theory ," Review of Economic Studies, Oxford University Press, vol. 77(1), pages 339-371.
  35. Bryan S. Graham & Jinyong Hahn & Alexandre Poirier & James L. Powell, 2015. "Quantile Regression with Panel Data," NBER Working Papers 21034, National Bureau of Economic Research, Inc.
  36. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  37. Harding, Matthew & Lamarche, Carlos, 2014. "Estimating and testing a quantile regression model with interactive effects," Journal of Econometrics, Elsevier, vol. 178(P1), pages 101-113.
  38. You, Wan-Hai & Zhu, Hui-Ming & Yu, Keming & Peng, Cheng, 2015. "Democracy, Financial Openness, and Global Carbon Dioxide Emissions: Heterogeneity Across Existing Emission Levels," World Development, Elsevier, vol. 66(C), pages 189-207.
  39. Ott Toomet, 2011. "Learn English, Not the Local Language! Ethnic Russians in the Baltic States," American Economic Review, American Economic Association, vol. 101(3), pages 526-531, May.
  40. Lamarche, Carlos, 2008. "Private school vouchers and student achievement: A fixed effects quantile regression evaluation," Labour Economics, Elsevier, vol. 15(4), pages 575-590, August.
  41. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
  42. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  43. Klomp, Jeroen & Haan, Jakob de, 2012. "Banking risk and regulation: Does one size fit all?," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3197-3212.
  44. Lee, Jen-Sin & Huang, Gow-Liang & Kuo, Chin-Tai & Lee, Liang-Chien, 2012. "The momentum effect on Chinese real estate stocks: Evidence from firm performance levels," Economic Modelling, Elsevier, vol. 29(6), pages 2392-2406.
  45. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
  46. Sherrilyn Billger & Carlos Lamarche, 2015. "A panel data quantile regression analysis of the immigrant earnings distribution in the United Kingdom and United States," Empirical Economics, Springer, vol. 49(2), pages 705-750, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.08622. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.