IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v3y2015i3p654-666d55584.html
   My bibliography  Save this article

On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study

Author

Listed:
  • Antonio F. Galvao

    () (Department of Economics, University of Iowa, W284 PBB, 21 E. Market Street, Iowa City, IA 52242, USA)

  • Gabriel Montes-Rojas

    () (CONICET-Universidad de San Andrés, Vito Dumas 284, Victoria, B1644BID, Pcia. de Bs. As., Argentina
    Department of Economics, City University London, Northampton Square, London EC1V 0HB, UK)

Abstract

This paper evaluates bootstrap inference methods for quantile regression panel data models. We propose to construct confidence intervals for the parameters of interest using percentile bootstrap with pairwise resampling. We study three different bootstrapping procedures. First, the bootstrap samples are constructed by resampling only from cross-sectional units with replacement. Second, the temporal resampling is performed from the time series. Finally, a more general resampling scheme, which considers sampling from both the cross-sectional and temporal dimensions, is introduced. The bootstrap algorithms are computationally attractive and easy to use in practice. We evaluate the performance of the bootstrap confidence interval by means of Monte Carlo simulations. The results show that the bootstrap methods have good finite sample performance for both location and location-scale models.

Suggested Citation

  • Antonio F. Galvao & Gabriel Montes-Rojas, 2015. "On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study," Econometrics, MDPI, Open Access Journal, vol. 3(3), pages 1-13, September.
  • Handle: RePEc:gam:jecnmx:v:3:y:2015:i:3:p:654-666:d:55584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/3/3/654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/3/3/654/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    2. Galvao Jr., Antonio F., 2011. "Quantile regression for dynamic panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 164(1), pages 142-157, September.
    3. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    4. Wang, Huixia & He, Xuming, 2007. "Detecting Differential Expressions in GeneChip Microarray Studies: A Quantile Approach," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 104-112, March.
    5. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    6. Galvao, Antonio F. & Wang, Liang, 2015. "Efficient minimum distance estimator for quantile regression fixed effects panel data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 1-26.
    7. Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
    8. Antonio F. Galvao & Carlos Lamarche & Luiz Renato Lima, 2013. "Estimation of Censored Quantile Regression for Panel Data With Fixed Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1075-1089, September.
    9. Hahn, Jinyong, 1995. "Bootstrapping Quantile Regression Estimators," Econometric Theory, Cambridge University Press, vol. 11(1), pages 105-121, February.
    10. G. Kapetanios, 2008. "A bootstrap procedure for panel data sets with many cross-sectional units," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 377-395, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Papers 1708.08622, arXiv.org.
    2. Adrian, Tobias & Grinberg, Federico & Liang, Nellie & Malik, Sheherya, 2018. "The Term Structure of Growth-at-Risk," CEPR Discussion Papers 13349, C.E.P.R. Discussion Papers.
    3. Galina Besstremyannaya & Sergei Golovan, 2019. "Reconsideration of a simple approach to quantile regression for panel data: a comment on the Canay (2011) fixed effects estimator," Working Papers w0249, Center for Economic and Financial Research (CEFIR).
    4. repec:gam:jrisks:v:6:y:2018:i:3:p:97-:d:169588 is not listed on IDEAS
    5. Galina Besstremyannaya & Sergei Golovan, 2019. "Reconsideration of a simple approach to quantile regression for panel data: a comment on the Canay (2011) fixed effects estimator," Working Papers w0249, New Economic School (NES).

    More about this item

    Keywords

    quantile regression; bootstrap; fixed effects;

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C - Mathematical and Quantitative Methods
    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:3:y:2015:i:3:p:654-666:d:55584. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.