IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v11y2008i2p377-395.html
   My bibliography  Save this article

A bootstrap procedure for panel data sets with many cross-sectional units

Author

Listed:
  • G. Kapetanios

Abstract

This paper considers the issue of bootstrap resampling in panel data sets. The availability of data sets with large temporal and cross-sectional dimensions suggests the possibility of new resampling schemes. We suggest one possibility which has not been widely explored in the literature. It amounts to constructing bootstrap samples by resampling whole cross-sectional units with replacement. In cases where the data do not exhibit cross-sectional dependence but exhibit temporal dependence, such a resampling scheme is of great interest as it allows the application of i.i.d. bootstrap resampling rather than block bootstrap resampling. It is well known that the former enables superior approximation to distributions of statistics compared to the latter. We prove that the bootstrap based on cross-sectional resampling provides asymptotic refinements. A Monte Carlo study illustrates the superior properties of the new resampling scheme compared to the block bootstrap. Copyright © 2008 The Author. Journal compilation © Royal Economic Society 2008

Suggested Citation

  • G. Kapetanios, 2008. "A bootstrap procedure for panel data sets with many cross-sectional units," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 377-395, July.
  • Handle: RePEc:ect:emjrnl:v:11:y:2008:i:2:p:377-395
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1368-423X.2008.00243.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arturas Juodis & Sarafidis, V., 2015. "A Simple Estimator for Short Panels with Common Factors," UvA-Econometrics Working Papers 15-03, Universiteit van Amsterdam, Dept. of Econometrics.
    2. Vivian Norambuena, 2015. "Sovereign Debt Default: Are Countries Trapped by Their Own Default History?," Working Papers wp416, University of Chile, Department of Economics.
    3. Everaert, Gerdie, 2014. "A panel analysis of the fisher effect with an unobserved I(1) world real interest rate," Economic Modelling, Elsevier, vol. 41(C), pages 198-210.
    4. Bolano, Danilo & Berchtold, André, 2016. "General framework and model building in the class of Hidden Mixture Transition Distribution models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 131-145.
    5. Borgers, A.C.T., 2014. "Responsible investing : New insights into performance and tastes," Other publications TiSEM 587e777f-c242-4a44-968e-7, Tilburg University, School of Economics and Management.
    6. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    7. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.
    8. Wang, Ruixin, 2015. "Essays on development economics and public economics," Other publications TiSEM e1779514-5b71-4726-925b-2, Tilburg University, School of Economics and Management.
    9. Yang, Haisheng & He, Jie & Chen, Shaoling, 2015. "The fragility of the Environmental Kuznets Curve: Revisiting the hypothesis with Chinese data via an “Extreme Bound Analysis”," Ecological Economics, Elsevier, vol. 109(C), pages 41-58.
    10. repec:spr:jstada:v:4:y:2017:i:1:d:10.1186_s40488-017-0066-3 is not listed on IDEAS
    11. Kézdi, Gábor & Mátyás, László & Balázsi, László & Divényi, János Károly, 2014. "A közgazdasági adatforradalom és a panelökonometria
      [The revolution in economic data and panel econometrics]
      ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1319-1340.
    12. Ignace De Vos & Gerdie Everaert & Ilse Ruyssen, 2015. "Bootstrap-based bias correction and inference for dynamic panels with fixed effects," Stata Journal, StataCorp LP, vol. 15(4), pages 986-1018, December.
    13. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2018. "Robust linear static panel data models using ε-contamination," Journal of Econometrics, Elsevier, vol. 202(1), pages 108-123.
    14. Blake, David & Caulfield, Tristan & Ioannidis, Christos & Tonks, Ian, 2014. "Improved inference in the evaluation of mutual fund performance using panel bootstrap methods," Journal of Econometrics, Elsevier, vol. 183(2), pages 202-210.
    15. Galvao, Antonio F. & Montes-Rojas, Gabriel & Sosa-Escudero, Walter & Wang, Liang, 2013. "Tests for skewness and kurtosis in the one-way error component model," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 35-52.
    16. Johan Blomquist & Joakim Westerlund, 2016. "Panel bootstrap tests of slope homogeneity," Empirical Economics, Springer, vol. 50(4), pages 1359-1381, June.
    17. Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011. "Cross-sectional dependence robust block bootstrap panel unit root tests," Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
    18. Carlos Perez Montes, 2015. "Estimation of Regulatory Credit Risk Models," Journal of Financial Services Research, Springer;Western Finance Association, vol. 48(2), pages 161-191, October.
    19. Günster, N.K. & Kole, H.J.W.G. & Jacobsen, B., 2009. "Riding Bubbles," ERIM Report Series Research in Management ERS-2009-058-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2014. "Robust Linear Static Panel Data Models Using ?-Contamination," IZA Discussion Papers 8661, Institute for the Study of Labor (IZA).
    21. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    22. Ignace De Vos & Gerdie Everaert, 2016. "Bias-Corrected Common Correlated Effects Pooled Estimation In Homogeneous Dynamic Panels," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 16/920, Ghent University, Faculty of Economics and Business Administration.
    23. Antonio F. Galvao & Gabriel Montes-Rojas, 2015. "On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study," Econometrics, MDPI, Open Access Journal, vol. 3(3), pages 1-13, September.
    24. Sanjoy Sinha & Abdus Sattar, 2015. "Inference in semi-parametric spline mixed models for longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 377-395, December.
    25. Trapani, Lorenzo, 2013. "On bootstrapping panel factor series," Journal of Econometrics, Elsevier, vol. 172(1), pages 127-141.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:11:y:2008:i:2:p:377-395. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.