IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0289474.html
   My bibliography  Save this article

Quantile regression for static panel data models with time-invariant regressors

Author

Listed:
  • Li Tao
  • Lingnan Tai
  • Maozai Tian

Abstract

This paper proposes two new weighted quantile regression estimators for static panel data model with time-invariant regressors. The two new estimators can improve the estimation of the coefficients with time-invariant regressors, which are computationally convenient and simple to implement. Also, the paper shows consistency and asymptotic normality of the two proposed estimator for sequential and simultaneous N, T asymptotics. Monte Carlo simulation in various parameters sets proves the validity of the proposed approach. It has an empirical application to study the effects of the influence factors of China’s exports using the trade gravity model.

Suggested Citation

  • Li Tao & Lingnan Tai & Maozai Tian, 2023. "Quantile regression for static panel data models with time-invariant regressors," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-30, August.
  • Handle: RePEc:plo:pone00:0289474
    DOI: 10.1371/journal.pone.0289474
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289474
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0289474&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0289474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Kripfganz & Claudia Schwarz, 2019. "Estimation of linear dynamic panel data models with time‐invariant regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 526-546, June.
    2. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    3. Harding, Matthew & Lamarche, Carlos, 2009. "A quantile regression approach for estimating panel data models using instrumental variables," Economics Letters, Elsevier, vol. 104(3), pages 133-135, September.
    4. Li Tao & Yuanjie Zhang & Maozai Tian, 2019. "Quantile Regression for Dynamic Panel Data Using Hausman–Taylor Instrumental Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1033-1069, March.
    5. Xiaowen Dai & Libin Jin, 2021. "Minimum distance quantile regression for spatial autoregressive panel data models with fixed effects," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-13, December.
    6. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
    7. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    8. Freeman, Rebecca & Lewis, John, 2021. "Gravity model estimates of the spatial determinants of trade, migration, and trade-and-migration policies," Economics Letters, Elsevier, vol. 204(C).
    9. Harding, Matthew & Lamarche, Carlos, 2014. "A Hausman–Taylor instrumental variable approach to the penalized estimation of quantile panel models," Economics Letters, Elsevier, vol. 124(2), pages 176-179.
    10. Theresa M. Greaney & Kozo Kiyota, 2020. "The gravity model and trade in intermediate inputs," The World Economy, Wiley Blackwell, vol. 43(8), pages 2034-2049, August.
    11. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    12. Plümper, Thomas & Troeger, Vera E., 2007. "Efficient Estimation of Time-Invariant and Rarely Changing Variables in Finite Sample Panel Analyses with Unit Fixed Effects," Political Analysis, Cambridge University Press, vol. 15(2), pages 124-139, April.
    13. Galvao, Antonio F. & Wang, Liang, 2015. "Efficient minimum distance estimator for quantile regression fixed effects panel data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 1-26.
    14. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    15. Zhang, Yonghui & Zhou, Qiankun, 2019. "Estimation for time-invariant effects in dynamic panel data models with application to income dynamics," Econometrics and Statistics, Elsevier, vol. 9(C), pages 62-77.
    16. Sebastian Kripfganz, 2019. "Generalized method of moments estimation of linear dynamic panel-data models," London Stata Conference 2019 17, Stata Users Group.
    17. Antonio F. Galvao & Carlos Lamarche & Luiz Renato Lima, 2013. "Estimation of Censored Quantile Regression for Panel Data With Fixed Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1075-1089, September.
    18. Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2024. "Bootstrap Inference for Panel Data Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 628-639, April.
    2. Li Tao & Lingnan Tai & Manling Qian & Maozai Tian, 2023. "A New Instrumental-Type Estimator for Quantile Regression Models," Mathematics, MDPI, vol. 11(15), pages 1-26, August.
    3. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    4. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    5. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    6. Harding, Matthew & Lamarche, Carlos, 2019. "A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment," Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
    7. Liang Chen & Yulong Huo, 2019. "A Simple Estimator for Quantile Panel Data Models Using Smoothed Quantile Regressions," Papers 1911.04729, arXiv.org.
    8. Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
    9. Xiao, Zhijie & Xu, Lan, 2019. "What do mean impacts miss? Distributional effects of corporate diversification," Journal of Econometrics, Elsevier, vol. 213(1), pages 92-120.
    10. Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
    11. Lamarche, Carlos & Parker, Thomas, 2023. "Wild bootstrap inference for penalized quantile regression for longitudinal data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1799-1826.
    12. Matthew Harding & Carlos Lamarche, 2017. "Penalized Quantile Regression with Semiparametric Correlated Effects: An Application with Heterogeneous Preferences," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 342-358, March.
    13. Baruník, Jozef & Čech, František, 2021. "Measurement of common risks in tails: A panel quantile regression model for financial returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    14. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    15. Dogan, Eyup & Altinoz, Buket & Tzeremes, Panayiotis, 2020. "The analysis of ‘Financial Resource Curse’ hypothesis for developed countries: Evidence from asymmetric effects with quantile regression," Resources Policy, Elsevier, vol. 68(C).
    16. Dogan, Eyup & Altinoz, Buket & Madaleno, Mara & Taskin, Dilvin, 2020. "The impact of renewable energy consumption to economic growth: A replication and extension of Inglesi-Lotz (2016)," Energy Economics, Elsevier, vol. 90(C).
    17. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
    18. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    19. Li Tao & Yuanjie Zhang & Maozai Tian, 2019. "Quantile Regression for Dynamic Panel Data Using Hausman–Taylor Instrumental Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1033-1069, March.
    20. Jungmo Yoon & Antonio F. Galvao, 2020. "Cluster robust covariance matrix estimation in panel quantile regression with individual fixed effects," Quantitative Economics, Econometric Society, vol. 11(2), pages 579-608, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0289474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.