IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v32y2017i2p342-358.html

Penalized Quantile Regression with Semiparametric Correlated Effects: An Application with Heterogeneous Preferences

Author

Listed:
  • Matthew Harding
  • Carlos Lamarche

Abstract

This paper proposes new ℓ1‐penalized quantile regression estimators for panel data, which explicitly allows for individual heterogeneity associated with covariates. Existing fixed‐effects estimators can potentially suffer from three limitations which are overcome by the proposed approach: (i) incidental parameters bias in nonlinear models with large N and small T; (ii) lack of efficiency; and (iii) inability to estimate the effects of time‐invariant regressors. We conduct Monte Carlo simulations to assess the small‐sample performance of the new estimators and provide comparisons of new and existing penalized estimators in terms of quadratic loss. We apply the technique to an empirical example of the estimation of consumer preferences for nutrients from a demand model using a large transaction‐level dataset of household food purchases. We show that preferences for nutrients vary across the conditional distribution of expenditure and across genders, and emphasize the importance of fully capturing consumer heterogeneity in demand modeling. Copyright © 2016 John Wiley & Sons, Ltd.

Suggested Citation

  • Matthew Harding & Carlos Lamarche, 2017. "Penalized Quantile Regression with Semiparametric Correlated Effects: An Application with Heterogeneous Preferences," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 342-358, March.
  • Handle: RePEc:wly:japmet:v:32:y:2017:i:2:p:342-358
    DOI: 10.1002/jae.2520
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2520
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.2520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Liu, 2024. "A quantile-based nonadditive fixed effects model," Papers 2405.03826, arXiv.org, revised Dec 2025.
    2. Maria Laura Battagliola & Helle Sørensen & Anders Tolver & Ana-Maria Staicu, 2025. "Quantile Regression for Longitudinal Functional Data with Application to Feed Intake of Lactating Sows," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 211-230, March.
    3. Song, Xiaojun & Yang, Zixin, 2025. "Unified specification tests in partially linear quantile regression models," Statistics & Probability Letters, Elsevier, vol. 216(C).
    4. Yu, Lu & Gu, Jiaying & Volgushev, Stanislav, 2024. "Spectral clustering with variance information for group structure estimation in panel data," Journal of Econometrics, Elsevier, vol. 241(1).
    5. Al Rababa'a, Abdel Razzaq & Alomari, Mohammad & Mensi, Walid & Matar, Ali & Saidat, Zaid, 2021. "Does tracking the infectious diseases impact the gold, oil and US dollar returns and correlation? A quantile regression approach," Resources Policy, Elsevier, vol. 74(C).
    6. Liyun Zhou & Weinan Lin & Chunpeng Yang, 2024. "Investor trading behavior and asset prices: Evidence from quantile regression analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1722-1744, April.
    7. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
    8. Lamarche, Carlos & Parker, Thomas, 2023. "Wild bootstrap inference for penalized quantile regression for longitudinal data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1799-1826.
    9. Jiaying Gu & Stanislav Volgushev, 2018. "Panel Data Quantile Regression with Grouped Fixed Effects," Papers 1801.05041, arXiv.org, revised Aug 2018.
    10. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    11. Zongwu Cai & Meng Shi & Yue Zhao & Wuqing Wu, 2020. "Testing Financial Hierarchy Based on A PDQ-CRE Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202011, University of Kansas, Department of Economics, revised Jul 2020.
    12. Harding, Matthew & Lamarche, Carlos, 2019. "A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment," Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
    13. Hartley, Robert Paul & Lamarche, Carlos, 2018. "Behavioral responses and welfare reform: Evidence from a randomized experiment," Labour Economics, Elsevier, vol. 54(C), pages 135-151.
    14. Alomari, Mohammad & Al Rababa'a, Abdel Razzaq & Ur Rehman, Mobeen & Power, David M., 2022. "Infectious diseases tracking and sectoral stock market returns: A quantile regression analysis," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    15. Panayiotis Tzeremes, 2022. "The Asymmetric Effects of Regional House Prices in the UK: New Evidence from Panel Quantile Regression Framework," Studies in Microeconomics, , vol. 10(1), pages 7-22, June.
    16. Gu, Jiaying & Volgushev, Stanislav, 2019. "Panel data quantile regression with grouped fixed effects," Journal of Econometrics, Elsevier, vol. 213(1), pages 68-91.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:32:y:2017:i:2:p:342-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.