IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v52y1995i1p83-106.html
   My bibliography  Save this article

Some Continuous Edgeworth Expansions for Markov Chains with Applications to Bootstrap

Author

Listed:
  • Datta, S.
  • Mccormick, W. P.

Abstract

This paper deals with the first order Edgeworth expansions for sums related to an ergodic Markov chain with general state space. In the first part of the paper, we establish certain continuity, w.r.t. the transition probability function and the initial distribution, in these expansions. In the second part, we illustrate the use of our continuous expansions in the area of bootstrap. We consider bootstrapping the distribution of the (sample) mean of a fixed real function of a Markov chain. Under a conditional non-latticeness condition, the bootstrap is shown to be second order accurate. As a second application we obtain Edgeworth expansions for the bootstrap approximation to the sampling distribution of the m.l.e. of a particular transition probability in a finite Markov chain. It is shown that the bootstrap is second order accurate and is therefore superior to the normal approximation, if the transition probability is irrational. In the other case, the exact asymptotic upper bound constant in the O(n-) rate of bootstrap approximation is determined.

Suggested Citation

  • Datta, S. & Mccormick, W. P., 1995. "Some Continuous Edgeworth Expansions for Markov Chains with Applications to Bootstrap," Journal of Multivariate Analysis, Elsevier, vol. 52(1), pages 83-106, January.
  • Handle: RePEc:eee:jmvana:v:52:y:1995:i:1:p:83-106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(85)71005-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Dragan Radulović, 2004. "Renewal type bootstrap for Markov chains," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 147-192, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:52:y:1995:i:1:p:83-106. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.