IDEAS home Printed from https://ideas.repec.org/p/qmw/qmwecw/wp679.html
   My bibliography  Save this paper

Block Bootstrap and Long Memory

Author

Listed:
  • George Kapetanios

    () (Queen Mary, University of London)

  • Fotis Papailias

    (Queen Mary, University of London)

Abstract

We consider the issue of Block Bootstrap methods in processes that exhibit strong dependence. The main difficulty is to transform the series in such way that implementation of these techniques can provide an accurate approximation to the true distribution of the test statistic under consideration. The bootstrap algorithm we suggest consists of the following operations: given x t ~ I(d 0 ) , 1) estimate the long memory parameter and obtain dˆ , 2) difference the series dˆ times, 3) apply the block bootstrap on the above and finally, 4) cumulate the bootstrap sample dˆ times. Repetition of steps 3 and 4 for a sufficient number of times, results to a successful estimation of the distribution of the test statistic. Furthermore, we establish the asymptotic validity of this method. Its finite-sample properties are investigated via Monte Carlo experiments and the results indicate that it can be used as an alternative, and in most of the cases to be preferred than the Sieve AR bootstrap for fractional processes.

Suggested Citation

  • George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
  • Handle: RePEc:qmw:qmwecw:wp679
    as

    Download full text from publisher

    File URL: http://www.econ.qmul.ac.uk/media/econ/research/workingpapers/archive/wp679.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non-Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    2. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    3. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
    4. Kapetanios, George, 2009. "Testing for strict stationarity in financial variables," Journal of Banking & Finance, Elsevier, vol. 33(12), pages 2346-2362, December.
    5. Hidalgo, Javier, 2003. "An alternative bootstrap to moving blocks for time series regression models," Journal of Econometrics, Elsevier, vol. 117(2), pages 369-399, December.
    6. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameter for nonlinear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 211-251, March.
    7. Park, Joon Y., 2002. "An Invariance Principle For Sieve Bootstrap In Time Series," Econometric Theory, Cambridge University Press, vol. 18(02), pages 469-490, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
    2. Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
    3. Sizova, Natalia, 2014. "A frequency-domain alternative to long-horizon regressions with application to return predictability," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 261-272.

    More about this item

    Keywords

    Block Bootstrap; Long memory; Resampling; Strong dependence;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:wp679. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nicholas Owen) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/deqmwuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.