IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/15-46.html
   My bibliography  Save this paper

Inference for Impulse Response Coefficients From Multivariate Fractionally Integrated Processes

Author

Listed:
  • Richard T. Baillie

    () (Department of Economics, Michigan State University, USA; School of Economics and Finance, Queen Mary University of London, UK; The Rimini Centre for Economic Analysis, Italy)

  • George Kapetanios

    () (School of Economics and Finance, Queen Mary University of London, UK)

  • Fotis Papailias

    () (Queen's University Management School, Queen's University Belfast, UK; quantf research, www.quantf.com)

Abstract

This paper considers a multivariate system of fractionally integrated time series and investigates the most appropriate way for estimating Impulse Response (IR) coefficients and their associated confidence intervals. The paper extends the univariate analysis recently provided by Baillie and Kapetanios (2013), and uses a semi parametric, time domain estimator, based on a vector autoregression (VAR) approximation. Results are also derived for the orthogonalized estimated IRs which are generally more practically relevant. Simulation evidence strongly indicates the desirability of applying the Kilian small sample bias correction, which is found to improve the coverage accuracy of confidence intervals for IRs. The most appropriate order of the VAR turns out to be relevant for the lag length of the IR being estimated.

Suggested Citation

  • Richard T. Baillie & George Kapetanios & Fotis Papailias, 2015. "Inference for Impulse Response Coefficients From Multivariate Fractionally Integrated Processes," Working Paper series 15-46, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:15-46
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp15-46.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
    2. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
    3. Chung, Ching-Fan, 2002. "Sample Means, Sample Autocovariances, And Linear Regression Of Stationary Multivariate Long Memory Processes," Econometric Theory, Cambridge University Press, vol. 18(01), pages 51-78, February.
    4. Paparoditis, Efstathios, 1996. "Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 277-296, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:15-46. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.