IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Joint Confidence Sets for Structural Impulse Responses

Listed author(s):
  • Atsushi Inoue
  • Lutz Kilian

Many questions of economic interest in structural VAR analysis involve estimates of multiple impulse response functions. Other questions relate to the shape of a given impulse response function. Answering these questions requires joint inference about sets of structural impulse responses, allowing for dependencies across time as well as across response functions. Such joint inference is complicated by the fact that the joint distribution of the structural impulse response estimators becomes degenerate when the number of structural impulse responses of interest exceeds the number of model parameters, as is often the case in applied work. This degeneracy may be overcome by transforming the estimator appropriately. We show that the joint Wald test is invariant to this transformation and converges to a nonstandard distribution, which can be approximated by the bootstrap, allowing the construction of asymptotically valid joint confidence sets for any subset of structural impulse responses, regardless of whether the joint distribution of the structural impulse responses is degenerate or not. We propose to represent the joint confidence sets in the form of “shotgun plots” rather than joint confidence bands for impulse response functions. Several empirical examples demonstrate that this approach not only conveys the same information as confidence bands about the statistical significance of response functions, but may be used to provide economically relevant additional information about the shape of and comovement across response functions that is lost when reducing the joint confidence set to two-dimensional bands.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cesifo-group.de/portal/page/portal/DocBase_Content/WP/WP-CESifo_Working_Papers/wp-cesifo-2016/wp-cesifo-2016-02/cesifo1_wp5746.pdf
Download Restriction: no

Paper provided by CESifo Group Munich in its series CESifo Working Paper Series with number 5746.

as
in new window

Length:
Date of creation: 2016
Handle: RePEc:ces:ceswps:_5746
Contact details of provider: Postal:
Poschingerstrasse 5, 81679 Munich

Phone: +49 (89) 9224-0
Fax: +49 (89) 985369
Web page: http://www.cesifo-group.de
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(03), pages 348-358, June.
  2. Prosper Dovonon & Sílvia Gonçalves, 2014. "Bootstrapping the GMM overidentification test Under first-order underidentification," CIRANO Working Papers 2014s-25, CIRANO.
  3. Òscar Jordà, 2009. "Simultaneous Confidence Regions for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 91(3), pages 629-647, August.
  4. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
  5. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
  6. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
  7. Inoue, Atsushi & Kilian, Lutz, 2013. "Inference on impulse response functions in structural VAR models," Journal of Econometrics, Elsevier, vol. 177(1), pages 1-13.
  8. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
  9. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2015. "Comparison of methods for constructing joint confidence bands for impulse response functions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 782-798.
  10. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148 Elsevier.
  11. Lütkepohl, Helmut & Poskitt, D.S., 1991. "Estimating Orthogonal Impulse Responses via Vector Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 7(04), pages 487-496, December.
  12. Nigar Hashimzade & Michael A. Thornton (ed.), 2013. "Handbook of Research Methods and Applications in Empirical Macroeconomics," Books, Edward Elgar Publishing, number 14327.
  13. Robert B. Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
  14. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
  15. Blanchard, Olivier Jean, 1989. "A Traditional Interpretation of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 79(5), pages 1146-1164, December.
  16. Bao, Yong, 2007. "The Approximate Moments Of The Least Squares Estimator For The Stationary Autoregressive Model Under A General Error Distribution," Econometric Theory, Cambridge University Press, vol. 23(05), pages 1013-1021, October.
  17. Lutz Kilian, 1999. "Finite-Sample Properties of Percentile and Percentile-t Bootstrap Confidence Intervals for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 652-660, November.
  18. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
  19. Lutz Kilian, 2008. "A Comparison of the Effects of Exogenous Oil Supply Shocks on Output and Inflation in the G7 Countries," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 78-121, 03.
  20. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," Discussion Papers of DIW Berlin 1354, DIW Berlin, German Institute for Economic Research.
  21. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
  22. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
  23. Antoine, Bertille & Renault, Eric, 2012. "Efficient minimum distance estimation with multiple rates of convergence," Journal of Econometrics, Elsevier, vol. 170(2), pages 350-367.
  24. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters,in: Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554 Edward Elgar Publishing.
  25. Lutkepohl, Helmut, 1990. "Asymptotic Distributions of Impulse Response Functions and Forecast Error Variance Decompositions of Vector Autoregressive Models," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 116-125, February.
  26. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
  27. Kilian, Lutz & Chang, Pao-Li, 2000. "How accurate are confidence intervals for impulse responses in large VAR models?," Economics Letters, Elsevier, vol. 69(3), pages 299-307, December.
  28. Lutz Kilian & Yun Jung Kim, 2011. "How Reliable Are Local Projection Estimators of Impulse Responses?," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1460-1466, November.
  29. Kilian, Lutz, 2001. "Impulse Response Analysis in Vector Autoregressions with Unknown Lag Order," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(3), pages 161-179, April.
  30. Lutkepohl, Helmut & Burda, Maike M., 1997. "Modified Wald tests under nonregular conditions," Journal of Econometrics, Elsevier, vol. 78(2), pages 315-332, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_5746. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Klaus Wohlrabe)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.