IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v39y2018i5p641-664.html

Balanced Bootstrap Joint Confidence Bands for Structural Impulse Response Functions

Author

Listed:
  • Stefan Bruder
  • Michael Wolf

Abstract

Constructing joint confidence bands for structural impulse response functions based on a VAR model is a difficult task because of the non‐linear nature of such functions. We propose new joint confidence bands that cover the entire true structural impulse response function up to a chosen maximum horizon with a pre‐specified probability (1−α), at least asymptotically. Such bands are based on a certain bootstrap procedure from the multiple testing literature. We compare the finite‐sample properties of our method with those of existing methods via extensive Monte Carlo simulations. We also investigate the effect of endogenizing the lag order in our bootstrap procedure on the finite‐sample properties. Furthermore, an empirical application to a real dataset is provided.

Suggested Citation

  • Stefan Bruder & Michael Wolf, 2018. "Balanced Bootstrap Joint Confidence Bands for Structural Impulse Response Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(5), pages 641-664, September.
  • Handle: RePEc:bla:jtsera:v:39:y:2018:i:5:p:641-664
    DOI: 10.1111/jtsa.12289
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12289
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas E. Arias & Juan F. Rubio‐Ramírez & Daniel F. Waggoner, 2025. "Uniform Priors for Impulse Responses," Econometrica, Econometric Society, vol. 93(2), pages 695-718, March.
    2. Atsushi Inoue & Lutz Kilian, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," Working Papers 2030, Federal Reserve Bank of Dallas.
    3. Jochen Güntner & Magnus Reif & Maik Wolters, 2024. "Sudden stop: Supply and demand shocks in the German natural gas market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1282-1300, November.
    4. Jonas E. Arias & Juan F. Rubio-Ramirez & Daniel F. Waggoner, 2020. "Uniform Priors for Impulse Responses," Working Papers 22-30, Federal Reserve Bank of Philadelphia.
    5. Inoue, Atsushi & Kilian, Lutz, 2022. "Joint Bayesian inference about impulse responses in VAR models," Journal of Econometrics, Elsevier, vol. 231(2), pages 457-476.
    6. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    7. Thomas F. P. Wiesen & Paul M. Beaumont, 2024. "A joint impulse response function for vector autoregressive models," Empirical Economics, Springer, vol. 66(4), pages 1553-1585, April.
    8. Lenard Lieb & Stephan Smeekes, 2017. "Inference for Impulse Responses under Model Uncertainty," Papers 1709.09583, arXiv.org, revised Oct 2019.
    9. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2020. "Constructing joint confidence bands for impulse response functions of VAR models – A review," Econometrics and Statistics, Elsevier, vol. 13(C), pages 69-83.
    10. Micheli, Martin, 2019. "Labor market effects of minimum wage shocks," Ruhr Economic Papers 830, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    11. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:39:y:2018:i:5:p:641-664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.