IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v66y2024i4d10.1007_s00181-023-02496-6.html
   My bibliography  Save this article

A joint impulse response function for vector autoregressive models

Author

Listed:
  • Thomas F. P. Wiesen

    (University of Maine School of Economics)

  • Paul M. Beaumont

    (Florida State University Department of Economics)

Abstract

Many applications call for measuring the response due to shocks from several variables at once. We introduce a joint impulse response function (jIRF) that is independent of the order of the variables and allows for simultaneous shocks from multiple variables in the VAR, rather than one at a time as in the generalized IRF. The proposed jIRF controls for the cross-correlations of the several simultaneous shocks. As an application of the jIRF, we study the effect of the COVID-19 pandemic on trans-Atlantic volatility transmissions across large financial institutions and show that simply summing the generalized IRFs overestimates volatility transmissions.

Suggested Citation

  • Thomas F. P. Wiesen & Paul M. Beaumont, 2024. "A joint impulse response function for vector autoregressive models," Empirical Economics, Springer, vol. 66(4), pages 1553-1585, April.
  • Handle: RePEc:spr:empeco:v:66:y:2024:i:4:d:10.1007_s00181-023-02496-6
    DOI: 10.1007/s00181-023-02496-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-023-02496-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-023-02496-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cipollini, Fabrizio & Giannozzi, Alessandro & Menchetti, Fiammetta & Roggi, Oliviero, 2020. "The beauty contest between systemic and systematic risk measures: Assessing the empirical performance," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 316-332.
    2. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    3. Christiano, Lawrence J & Eichenbaum, Martin & Evans, Charles, 1996. "The Effects of Monetary Policy Shocks: Evidence from the Flow of Funds," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 16-34, February.
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    6. Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
    7. Inoue, Atsushi & Kilian, Lutz, 2013. "Inference on impulse response functions in structural VAR models," Journal of Econometrics, Elsevier, vol. 177(1), pages 1-13.
    8. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    9. Jian Yang & Cheng Hsiao & Qi Li & Zijun Wang, 2006. "The emerging market crisis and stock market linkages: further evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 727-744, September.
    10. Giovanni Caggiano & Efrem Castelnuovo & Juan Manuel Figueres, 2020. "Economic Policy Uncertainty Spillovers in Booms and Busts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(1), pages 125-155, February.
    11. Stefan Bruder & Michael Wolf, 2018. "Balanced Bootstrap Joint Confidence Bands for Structural Impulse Response Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(5), pages 641-664, September.
    12. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    13. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    14. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    15. Yang, Jian & Tong, Meng & Yu, Ziliang, 2021. "Housing market spillovers through the lens of transaction volume: A new spillover index approach," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 351-378.
    16. Markku Lanne & Henri Nyberg, 2016. "Generalized Forecast Error Variance Decomposition for Linear and Nonlinear Multivariate Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(4), pages 595-603, August.
    17. Hadi Salehi Esfahani & Kamiar Mohaddes & M. Hashem Pesaran, 2014. "An Empirical Growth Model For Major Oil Exporters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 1-21, January.
    18. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    19. Loungani, Prakash & Stekler, Herman & Tamirisa, Natalia, 2013. "Information rigidity in growth forecasts: Some cross-country evidence," International Journal of Forecasting, Elsevier, vol. 29(4), pages 605-621.
    20. Phylaktis, Kate & Chen, Long, 2009. "Price discovery in foreign exchange markets: A comparison of indicative and actual transaction prices," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 640-654, September.
    21. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    22. Warwick McKibbin & Roshen Fernando, 2021. "The Global Macroeconomic Impacts of COVID-19: Seven Scenarios," Asian Economic Papers, MIT Press, vol. 20(2), pages 1-30, Summer.
    23. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    24. Matteo Barigozzi & Antonio M. Conti, 2018. "On the Stability of Euro Area Money Demand and Its Implications for Monetary Policy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(4), pages 755-787, August.
    25. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    26. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    27. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    28. Atsushi Inoue & Barbara Rossi, 2021. "A new approach to measuring economic policy shocks, with an application to conventional and unconventional monetary policy," Quantitative Economics, Econometric Society, vol. 12(4), pages 1085-1138, November.
    29. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2018. "Calculating joint confidence bands for impulse response functions using highest density regions," Empirical Economics, Springer, vol. 55(4), pages 1389-1411, December.
    30. Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
    31. Lahiri, Kajal & Zhao, Yongchen, 2019. "International propagation of shocks: A dynamic factor model using survey forecasts," International Journal of Forecasting, Elsevier, vol. 35(3), pages 929-947.
    32. Bradley Ewing & Shawn Forbes & James Payne, 2003. "The effects of macroeconomic shocks on sector-specific returns," Applied Economics, Taylor & Francis Journals, vol. 35(2), pages 201-207.
    33. Calice, Giovanni & Mio, RongHui & Štěrba, Filip & Vašíček, Bořek, 2015. "Short-term determinants of the idiosyncratic sovereign risk premium: A regime-dependent analysis for European credit default swaps," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 174-189.
    34. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    35. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    36. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2015. "Comparison of methods for constructing joint confidence bands for impulse response functions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 782-798.
    37. Smith, L. Vanessa & Yamagata, Takashi, 2011. "Firm level return–volatility analysis using dynamic panels," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 847-867.
    38. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    39. Bobeica, Elena & Hartwig, Benny, 2023. "The COVID-19 shock and challenges for inflation modelling," International Journal of Forecasting, Elsevier, vol. 39(1), pages 519-539.
    40. Greenwood-Nimmo, Matthew & Nguyen, Viet Hoang & Shin, Yongcheol, 2021. "Measuring the Connectedness of the Global Economy," International Journal of Forecasting, Elsevier, vol. 37(2), pages 899-919.
    41. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    42. Pesaran, M. Hashem, 2015. "Time Series and Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780198759980, Decembrie.
    43. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    44. Goodell, John W., 2020. "COVID-19 and finance: Agendas for future research," Finance Research Letters, Elsevier, vol. 35(C).
    45. Caloia, Francesco Giuseppe & Cipollini, Andrea & Muzzioli, Silvia, 2019. "How do normalization schemes affect net spillovers? A replication of the Diebold and Yilmaz (2012) study," Energy Economics, Elsevier, vol. 84(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiesen, Thomas F.P. & Adekoya, Oluwasegun Babatunde & Oliyide, Johnson & Afatsao, Richard, 2024. "Does high volatility increase connectedness? A study of Asian equity markets," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    2. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    3. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    4. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    5. Atsushi Inoue & Lutz Kilian, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," Working Papers 2030, Federal Reserve Bank of Dallas.
    6. Erdenebat Bataa & Andrew Vivian & Mark Wohar, 2019. "Changes in the relationship between short‐term interest rate, inflation and growth: evidence from the UK, 1820–2014," Bulletin of Economic Research, Wiley Blackwell, vol. 71(4), pages 616-640, October.
    7. Hsu, Chih-Hsiang & Lee, Hsiu-Chuan & Lien, Donald, 2020. "Stock market uncertainty, volatility connectedness of financial institutions, and stock-bond return correlations," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 600-621.
    8. Stenfors, Alexis & Chatziantoniou, Ioannis & Gabauer, David, 2022. "Independent policy, dependent outcomes: A game of cross-country dominoes across European yield curves," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    9. Nong, Huifu & Yu, Ziliang & Li, Yang, 2024. "Financial shock transmission in China's banking and housing sectors: A network analysis," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 701-723.
    10. Naeem, Muhammad Abubakr & Chatziantoniou, Ioannis & Gabauer, David & Karim, Sitara, 2024. "Measuring the G20 stock market return transmission mechanism: Evidence from the R2 connectedness approach," International Review of Financial Analysis, Elsevier, vol. 91(C).
    11. Balcilar, Mehmet & Ozdemir, Huseyin & Agan, Busra, 2022. "Effects of COVID-19 on cryptocurrency and emerging market connectedness: Empirical evidence from quantile, frequency, and lasso networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    12. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    13. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2020. "Constructing joint confidence bands for impulse response functions of VAR models – A review," Econometrics and Statistics, Elsevier, vol. 13(C), pages 69-83.
    14. Egger, Peter H. & Li, Jie & Zhu, Jiaqing, 2023. "The network and own effects of global-systemically-important-bank designations," Journal of International Money and Finance, Elsevier, vol. 136(C).
    15. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    16. Xiang, Youtao & Borjigin, Sumuya, 2024. "Multilayer networks for measuring interconnectedness among global stock markets through the lens of trading volume-price relationship," Global Finance Journal, Elsevier, vol. 62(C).
    17. Linh Xuan Diep Nguyen & Thanaset Chevapatrakul & Simona Mateut, 2023. "Shock transmissions and business linkages among US sectors," Annals of Operations Research, Springer, vol. 330(1), pages 517-552, November.
    18. Gabauer, David & Chatziantoniou, Ioannis & Stenfors, Alexis, 2023. "Model-free connectedness measures," Finance Research Letters, Elsevier, vol. 54(C).
    19. Thomas F. P. Wiesen & Todd Gabe & Lakshya Bharadwaj, 2023. "Econometric connectedness as a measure of urban influence: evidence from Maine," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-16, December.
    20. Majid Mirzaee Ghazani & Ali Akbar Momeni Malekshah & Reza Khosravi, 2024. "Analyzing time–frequency connectedness between cryptocurrencies, stock indices, and benchmark crude oils during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-28, December.

    More about this item

    Keywords

    Coronavirus; COVID-19; Generalized IRF; Forecast error variance decomposition; International financial spillovers; Multiple shocks; Simultaneous impulses; Volatility transmissions;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:66:y:2024:i:4:d:10.1007_s00181-023-02496-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.