IDEAS home Printed from https://ideas.repec.org/a/eee/jmacro/v33y2011i4p582-594.html
   My bibliography  Save this article

Bootstrapping structural VARs: Avoiding a potential bias in confidence intervals for impulse response functions

Author

Listed:
  • Phillips, Kerk L.
  • Spencer, David E.

Abstract

Constructing bootstrap confidence intervals for impulse response functions (IRFs) from structural vector autoregression (SVAR) models has become standard practice in empirical macroeconomic research. The accuracy of such confidence intervals can deteriorate severely, however, if the bootstrap IRFs are biased. We document an apparently common source of bias in the estimation of the VAR error covariance matrix which can be easily reduced by a scale adjustment. This bias is generally unrecognized because it only affects the bootstrap estimates of the error variance, not the original OLS estimates. Nevertheless, as we illustrate here, analytically, with sampling experiments, and in an example from the literature, the bootstrap error variance bias can have significant distorting effects on bootstrap IRF confidence intervals. We also show that scale-adjusted bootstrap confidence intervals can be expected to exhibit improved coverage accuracy.

Suggested Citation

  • Phillips, Kerk L. & Spencer, David E., 2011. "Bootstrapping structural VARs: Avoiding a potential bias in confidence intervals for impulse response functions," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 582-594.
  • Handle: RePEc:eee:jmacro:v:33:y:2011:i:4:p:582-594
    DOI: 10.1016/j.jmacro.2011.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0164070411000218
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Runkle, David E, 1987. "Vector Autoregressions and Reality," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 437-442, October.
    2. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    3. Runkle, David E, 1987. "Vector Autoregressions and Reality: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 454-454, October.
    4. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    5. David E. Runkle, 1987. "Vector autoregressions and reality," Staff Report 107, Federal Reserve Bank of Minneapolis.
    6. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
    7. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    8. Peters, S C & Freedman, D A, 1984. "Some Notes on the Bootstrap in Regression Problems," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 406-409, October.
    9. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148 Elsevier.
    10. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    11. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    12. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters,in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106 National Bureau of Economic Research, Inc.
    13. John B. Taylor, 1999. "Monetary Policy Rules," NBER Books, National Bureau of Economic Research, Inc, number tayl99-1, December.
    14. Kilian, Lutz & Chang, Pao-Li, 2000. "How accurate are confidence intervals for impulse responses in large VAR models?," Economics Letters, Elsevier, vol. 69(3), pages 299-307, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bryan Perry & Kerk L Phillips & David E. Spencer, 2015. "State-Level Variation in the Real Wage Response to Monetary Policy," Annals of Economics and Finance, Society for AEF, vol. 16(1), pages 1-17, May.
    2. Adugna Olani, 2016. "Dynamic Capital inflow transmission of monetary policy to emerging markets," Working Papers 1358, Queen's University, Department of Economics.
    3. Filippo Lechthaler & Lisa Leinert, 2012. "Moody Oil - What is Driving the Crude Oil Price?," CER-ETH Economics working paper series 12/168, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.

    More about this item

    Keywords

    Impulse response function; Structural VAR; Bias; Bootstrap;

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmacro:v:33:y:2011:i:4:p:582-594. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622617 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.