IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

The Leverage Effect Puzzle: Disentangling Sources of Bias at High Frequency

  • Yacine Ait-Sahalia
  • Jianqing Fan
  • Yingying Li

The leverage effect refers to the generally negative correlation between an asset return and its changes of volatility. A natural estimate consists in using the empirical correlation between the daily returns and the changes of daily volatility estimated from high-frequency data. The puzzle lies in the fact that such an intuitively natural estimate yields nearly zero correlation for most assets tested, despite the many economic reasons for expecting the estimated correlation to be negative. To better understand the sources of the puzzle, we analyze the different asymptotic biases that are involved in high frequency estimation of the leverage effect, including biases due to discretization errors, to smoothing errors in estimating spot volatilities, to estimation error, and to market microstructure noise. This decomposition enables us to propose novel bias correction methods for estimating the leverage effect.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 17592.

in new window

Date of creation: Nov 2011
Date of revision:
Publication status: published as Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
Handle: RePEc:nbr:nberwo:17592
Note: AP
Contact details of provider: Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
  2. Bandi, Federico M. & Renò, Roberto, 2012. "Time-varying leverage effects," Journal of Econometrics, Elsevier, vol. 169(1), pages 94-113.
  3. Kalnina, Ilze & Linton, Oliver, 2008. "Estimating quadratic variation consistently in the presence of endogenous and diurnal measurement error," Journal of Econometrics, Elsevier, vol. 147(1), pages 47-59, November.
  4. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
  5. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
  6. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 353-384.
  7. Tim Bollerslev & Natalia Sizova & George Tauchen, 2009. "Volatility in Equilibrium: Asymmetries and Dynamic Dependencies," Working Papers 10-73, Duke University, Department of Economics.
  8. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
  9. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
  10. Cecilia Mancini, 2009. "Non-parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296.
  11. Yacine Ait-Sahalia & Per A. Mykland & Lan Zhang, 2005. "Ultra High Frequency Volatility Estimation with Dependent Microstructure Noise," NBER Working Papers 11380, National Bureau of Economic Research, Inc.
  12. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2007. "Microstructure noise in the continuous case: the pre-averaging approach," Technical Reports 2007,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  13. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
  14. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  15. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  16. Jim Griffin & Roel Oomen, 2008. "Sampling Returns for Realized Variance Calculations: Tick Time or Transaction Time?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 230-253.
  17. Jianqing Fan & Yingying Li & Ke Yu, 2012. "Vast Volatility Matrix Estimation Using High-Frequency Data for Portfolio Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 412-428, March.
  18. Yacine A�t-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-50, December.
  19. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
  20. Duffee, Gregory R., 1995. "Stock returns and volatility A firm-level analysis," Journal of Financial Economics, Elsevier, vol. 37(3), pages 399-420, March.
  21. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous-Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, 06.
  22. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  23. Aït-Sahalia, Yacine & Fan, Jianqing & Xiu, Dacheng, 2010. "High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1504-1517.
  24. Jim Gatheral & Roel Oomen, 2010. "Zero-intelligence realized variance estimation," Finance and Stochastics, Springer, vol. 14(2), pages 249-283, April.
  25. Geert Bekaert & Guojun Wu, 1997. "Asymmetric Volatility and Risk in Equity Markets," NBER Working Papers 6022, National Bureau of Economic Research, Inc.
  26. Valeri Voev & Asger Lunde, 2007. "Integrated Covariance Estimation using High-frequency Data in the Presence of Noise," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 68-104.
  27. Yingying Li & Per A. Mykland, 2007. "Are volatility estimators robust with respect to modeling assumptions?," Papers 0709.0440,
  28. Fan, Jianqing & Wang, Yazhen, 2007. "Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1349-1362, December.
  29. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:17592. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.