IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v184y2015i2p361-378.html
   My bibliography  Save this article

Econometrics of co-jumps in high-frequency data with noise

Author

Listed:
  • Bibinger, Markus
  • Winkelmann, Lars

Abstract

We establish estimation methods to determine co-jumps in multivariate high-frequency data with non-synchronous observations and market microstructure. A rate-optimal estimator of the entire quadratic covariation of an Itô-semimartingale is constructed by a locally adaptive spectral approach. Thresholding allows to disentangle the co-jump from the continuous part. We derive a feasible limit theorem for a truncated estimator of integrated covolatility which facilitates asymptotically efficient (co-)volatility estimation in the presence of jumps. A test for common jumps is presented. Simulations and an empirical application to intra-day tick-data from EUREX futures demonstrate the practical value of the approach.

Suggested Citation

  • Bibinger, Markus & Winkelmann, Lars, 2015. "Econometrics of co-jumps in high-frequency data with noise," Journal of Econometrics, Elsevier, vol. 184(2), pages 361-378.
  • Handle: RePEc:eee:econom:v:184:y:2015:i:2:p:361-378
    DOI: 10.1016/j.jeconom.2014.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407614002322
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    3. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    4. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    5. Randolf Altmeyer & Markus Bibinger, 2014. "Functional stable limit theorems for efficient spectral covolatility estimators," SFB 649 Discussion Papers SFB649DP2014-005, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    7. Bollerslev, Tim & Law, Tzuo Hann & Tauchen, George, 2008. "Risk, jumps, and diversification," Journal of Econometrics, Elsevier, vol. 144(1), pages 234-256, May.
    8. Mancini, Cecilia & Gobbi, Fabio, 2012. "Identifying The Brownian Covariation From The Co-Jumps Given Discrete Observations," Econometric Theory, Cambridge University Press, vol. 28(02), pages 249-273, April.
    9. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    10. Sujin Park & Oliver Linton, 2012. "Estimating the Quadratic Covariation Matrix for an Asynchronously Observed Continuous Time Signal Masked by Additive Noise," FMG Discussion Papers dp703, Financial Markets Group.
    11. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    12. repec:hal:journl:peer-00741630 is not listed on IDEAS
    13. Fan, Jianqing & Wang, Yazhen, 2007. "Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1349-1362, December.
    14. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    15. Diop, Assane & Jacod, Jean & Todorov, Viktor, 2013. "Central Limit Theorems for approximate quadratic variations of pure jump Itô semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 839-886.
    16. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    17. Jérôme Lahaye & Sébastien Laurent & Christopher J. Neely, 2011. "Jumps, cojumps and macro announcements," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 893-921, September.
    18. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    19. repec:wyi:journl:002161 is not listed on IDEAS
    20. Linzert, Tobias & Winkelmann, Lars & Bibinger, Markus, 2014. "ECB monetary policy surprises: identification through cojumps in interest rates," Working Paper Series 1674, European Central Bank.
    21. Peter Imkeller & Nicolas Perkowski, 2011. "The Existence of Dominating Local Martingale Measures," Papers 1111.3885, arXiv.org, revised Mar 2013.
    22. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    23. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    24. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    25. Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2013. "On covariation estimation for multivariate continuous Itô semimartingales with noise in non-synchronous observation schemes," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 59-84.
    26. Aït-Sahalia, Yacine & Jacod, Jean & Li, Jia, 2012. "Testing for jumps in noisy high frequency data," Journal of Econometrics, Elsevier, vol. 168(2), pages 207-222.
    27. Fukasawa, Masaaki & Rosenbaum, Mathieu, 2012. "Central limit theorems for realized volatility under hitting times of an irregular grid," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 3901-3920.
    28. Jia Li, 2013. "Robust Estimation and Inference for Jumps in Noisy High Frequency Data: A Local‐to‐Continuity Theory for the Pre‐Averaging Method," Econometrica, Econometric Society, vol. 81(4), pages 1673-1693, July.
    29. Markus Bibinger & Markus Reiß, 2014. "Spectral Estimation of Covolatility from Noisy Observations Using Local Weights," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 23-50, March.
    30. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
    31. Aït-Sahalia, Yacine & Fan, Jianqing & Xiu, Dacheng, 2010. "High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1504-1517.
    32. M. Podolskij & D. Ziggel, 2010. "New tests for jumps in semimartingale models," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 15-41, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:econom:v:202:y:2018:i:1:p:18-44 is not listed on IDEAS
    2. repec:eee:finmar:v:37:y:2018:i:c:p:97-119 is not listed on IDEAS
    3. repec:eee:intfor:v:33:y:2017:i:3:p:729-742 is not listed on IDEAS
    4. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    5. repec:eee:jbfina:v:99:y:2019:i:c:p:252-274 is not listed on IDEAS
    6. Christophe Boucher & Gilles de Truchis & Elena Dumitrescu & Sessi Tokpavi, 2017. "Testing for Extreme Volatility Transmission with Realized Volatility Measures," EconomiX Working Papers 2017-20, University of Paris Nanterre, EconomiX.
    7. Bibinger, Markus & Neely, Christopher & Winkelmann, Lars, 2019. "Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 158-184.
    8. Caporin, Massimiliano & Kolokolov, Aleksey & Renò, Roberto, 2017. "Systemic co-jumps," Journal of Financial Economics, Elsevier, vol. 126(3), pages 563-591.
      • Caporin, Massimiliano & Kolokolov, Alexey & Renò, Roberto, 2016. "Systemic co-jumps," SAFE Working Paper Series 149, Research Center SAFE - Sustainable Architecture for Finance in Europe, Goethe University Frankfurt.
    9. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    10. Yuta Koike, 2017. "Time endogeneity and an optimal weight function in pre-averaging covariance estimation," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 15-56, April.
    11. repec:eee:dyncon:v:92:y:2018:i:c:p:30-46 is not listed on IDEAS

    More about this item

    Keywords

    Co-jumps; Covolatility estimation; Microstructure noise; Non-synchronous observations; Truncation;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:184:y:2015:i:2:p:361-378. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.