IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0709.0440.html
   My bibliography  Save this paper

Are volatility estimators robust with respect to modeling assumptions?

Author

Listed:
  • Yingying Li
  • Per A. Mykland

Abstract

We consider microstructure as an arbitrary contamination of the underlying latent securities price, through a Markov kernel $Q$. Special cases include additive error, rounding and combinations thereof. Our main result is that, subject to smoothness conditions, the two scales realized volatility is robust to the form of contamination $Q$. To push the limits of our result, we show what happens for some models that involve rounding (which is not, of course, smooth) and see in this situation how the robustness deteriorates with decreasing smoothness. Our conclusion is that under reasonable smoothness, one does not need to consider too closely how the microstructure is formed, while if severe non-smoothness is suspected, one needs to pay attention to the precise structure and also the use to which the estimator of volatility will be put.

Suggested Citation

  • Yingying Li & Per A. Mykland, 2007. "Are volatility estimators robust with respect to modeling assumptions?," Papers 0709.0440, arXiv.org.
  • Handle: RePEc:arx:papers:0709.0440
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0709.0440
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    3. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    4. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    5. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    6. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    2. repec:eee:econom:v:203:y:2018:i:2:p:187-222 is not listed on IDEAS
    3. Jianqing Fan & Yingying Li & Ke Yu, 2012. "Vast Volatility Matrix Estimation Using High-Frequency Data for Portfolio Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 412-428, March.
    4. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    5. Xinghua Zheng & Yingying Li, 2010. "On the estimation of integrated covariance matrices of high dimensional diffusion processes," Papers 1005.1862, arXiv.org, revised Mar 2012.
    6. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    7. Jean Jacod & Mark Podolskij & Mathias Vetter, 2008. "Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution," CREATES Research Papers 2008-61, Department of Economics and Business Economics, Aarhus University.
    8. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    9. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    10. repec:eee:econom:v:200:y:2017:i:1:p:79-103 is not listed on IDEAS
    11. Jie Xiong & Yong Zeng, 2011. "A branching particle approximation to a filtering micromovement model of asset price," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 111-140, May.
    12. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    13. Jean Jacod & Yingying Li & Per A. Mykland & Mark Podolskij & Mathias Vetter, 2007. "Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9," CREATES Research Papers 2007-43, Department of Economics and Business Economics, Aarhus University.
    14. Aït-Sahalia, Yacine & Jacod, Jean & Li, Jia, 2012. "Testing for jumps in noisy high frequency data," Journal of Econometrics, Elsevier, vol. 168(2), pages 207-222.
    15. Li, Yingying & Zhang, Zhiyuan & Zheng, Xinghua, 2013. "Volatility inference in the presence of both endogenous time and microstructure noise," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2696-2727.
    16. Richard Y. Chen & Per A. Mykland, 2015. "Model-Free Approaches to Discern Non-Stationary Microstructure Noise and Time-Varying Liquidity in High-Frequency Data," Papers 1512.06159, arXiv.org, revised Jan 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0709.0440. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.