IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Garch models without positivity constraints: exponential or log garch?

  • Francq, Christian
  • Wintenberger, Olivier
  • Zakoian, Jean-Michel

This paper studies the probabilistic properties and the estimation of the asymmetric log-GARCH($p,q$) model. In this model, the log-volatility is written as a linear function of past values of the log-squared observations, with coefficients depending on the sign of the observations, and past log-volatility values. Conditions are obtained for the existence of solutions and finiteness of their log-moments. We also study the tail properties of the solution. Under mild assumptions, we show that the quasi-maximum likelihood estimation of the parameters is strongly consistent and asymptotically normal. Simulations illustrating the theoretical results and an application to real financial data are proposed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/41373/1/MPRA_paper_41373.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 41373.

as
in new window

Length:
Date of creation: 16 Sep 2012
Date of revision:
Handle: RePEc:pra:mprapa:41373
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. BAUWENS, Luc & GALLI, Fausto & GIOT, Pierre, 2003. "The moments of Log-ACD models," CORE Discussion Papers 2003011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Drost, F.C. & Nijman, T.E., 1992. "Temporal Aggregation of Garch Processes," Papers 9240, Tilburg - Center for Economic Research.
  3. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  4. Genaro Sucarrat & Alvaro Escribano, 2010. "The power log-GARCH model," Economics Working Papers we1013, Universidad Carlos III, Departamento de Economía.
  5. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  6. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.
  7. Christian Francq & Jean-Michel Zakoïan, 2010. "Inconsistency of the MLE and inference based on weighted LS for LARCH models," Post-Print hal-00732536, HAL.
  8. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(03), pages 722-729, June.
  9. BAUWENS, Luc & GIOT, Pierre, . "The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks," CORE Discussion Papers RP -1497, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  10. Luc Bauwens & Pierre Giot & Joachim Grammig & David Veredas, 2000. "A Comparison of Financial Duration Models via Density Forecasts," Econometric Society World Congress 2000 Contributed Papers 0810, Econometric Society.
  11. Drost, F.C. & Nijman, T.E., 1993. "Temporal aggregation of GARCH processes," Other publications TiSEM 0642fb61-c7f4-4281-b484-4, Tilburg University, School of Economics and Management.
  12. Wintenberger, Olivier, 2013. "Continuous invertibility and stable QML estimation of the EGARCH(1,1) model," MPRA Paper 46027, University Library of Munich, Germany.
  13. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
  14. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  15. Kristensen Dennis & Rahbek Anders, 2009. "Asymptotics of the QMLE for Non-Linear ARCH Models," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-38, April.
  16. Luc Bauwens & Pierre Giot, 2003. "Asymmetric ACD models: Introducing price information in ACD models," Empirical Economics, Springer, vol. 28(4), pages 709-731, November.
  17. Genaro Sucarrat & Alvaro Escribano, 2012. "Automated Model Selection in Finance: General-to-Specific Modelling of the Mean and Volatility Specifications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(5), pages 716-735, October.
  18. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  19. repec:imd:wpaper:wp2010-25 is not listed on IDEAS
  20. He, Changli & Ter svirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(04), pages 868-885, August.
  21. Wintenberger, Olivier & Cai, Sixiang, 2011. "Parametric inference and forecasting in continuously invertible volatility models," MPRA Paper 31767, University Library of Munich, Germany.
  22. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:41373. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.