IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Optimal predictions of powers of conditionally heteroskedastic processes

  • Francq, Christian
  • Zakoian, Jean-Michel

In conditionally heteroskedastic models, the optimal prediction of powers, or logarithms, of the absolute process has a simple expression in terms of the volatility process and an expectation involving the independent process. A standard procedure for estimating this prediction is to estimate the volatility by gaussian quasi-maximum likelihood (QML) in a first step, and to use empirical means based on rescaled innovations to estimate the expectation in a second step. This paper proposes an alternative one-step procedure, based on an appropriate non-gaussian QML estimation of the model, and establishes the asymptotic properties of the two approaches. Their performances are compared for finite-order GARCH models and for the infinite ARCH. For the standard GARCH(p, q) and the Asymmetric Power GARCH(p,q), it is shown that the ARE of the estimators only depends on the prediction problem and some moments of the independent process. An application to indexes of major stock exchanges is proposed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/22155/1/MPRA_paper_22155.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 22155.

as
in new window

Length:
Date of creation: 17 Apr 2010
Date of revision:
Handle: RePEc:pra:mprapa:22155
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  2. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  3. Chris Brooks & Simon P. Burke & Gita Persand, 2002. "Augoregressive Conditional Kurtosis," ICMA Centre Discussion Papers in Finance icma-dp2002-05, Henley Business School, Reading University.
  4. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
  5. Paolo Zaffaroni & Peter M. Robinson, 2004. "PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION OF ARCH($ \infty $) MODELS," Econometric Society 2004 North American Summer Meetings 326, Econometric Society.
  6. BAUWENS, Luc & GIOT, Pierre, . "The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks," CORE Discussion Papers RP -1497, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. Baillie, R.T. & Bollerslev, R.T., 1990. "Prediction In Dynamic Models With Time Dependent Conditional Variances," Papers 8815, Michigan State - Econometrics and Economic Theory.
  8. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
  9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  10. Stephen J. Taylor, 2007. "Introduction to Asset Price Dynamics, Volatility, and Prediction
    [Asset Price Dynamics, Volatility, and Prediction]
    ," Introductory Chapters, Princeton University Press.
  11. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670.
  12. Francq, Christian & Lepage, Guillaume & Zakoïan, Jean-Michel, 2011. "Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE," Journal of Econometrics, Elsevier, vol. 165(2), pages 246-257.
  13. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
  14. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  15. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-58, February.
  16. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  17. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  18. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus, 2000. "Stationary Arch Models: Dependence Structure And Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 16(01), pages 3-22, February.
  19. Pan, Jiazhu & Wang, Hui & Tong, Howell, 2008. "Estimation and tests for power-transformed and threshold GARCH models," Journal of Econometrics, Elsevier, vol. 142(1), pages 352-378, January.
  20. Menelaos Karanasos, . "Prediction in ARMA models with GARCH in Mean Effects," Discussion Papers 99/11, Department of Economics, University of York.
  21. Shiqing Ling, 2004. "Estimation and testing stationarity for double-autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 63-78.
  22. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
  23. Mukherjee, Kanchan, 2008. "M-Estimation In Garch Models," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1530-1553, December.
  24. Escanciano, Juan Carlos, 2009. "Quasi-Maximum Likelihood Estimation Of Semi-Strong Garch Models," Econometric Theory, Cambridge University Press, vol. 25(02), pages 561-570, April.
  25. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:22155. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.