IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27y2011i2p308-319.html
   My bibliography  Save this article

Prediction intervals in conditionally heteroscedastic time series with stochastic components

Author

Listed:
  • Pellegrini, Santiago
  • Ruiz, Esther
  • Espasa, Antoni

Abstract

Differencing is a very popular stationary transformation for series with stochastic trends. Moreover, when the differenced series is heteroscedastic, authors commonly model it using an ARMA-GARCH model. The corresponding ARIMA-GARCH model is then used to forecast future values of the original series. However, the heteroscedasticity observed in the stationary transformation should be generated by the transitory and/or the long-run component of the original data. In the former case, the shocks to the variance are transitory and the prediction intervals should converge to homoscedastic intervals with the prediction horizon. We show that, in this case, the prediction intervals constructed from the ARIMA-GARCH models could be inadequate because they never converge to homoscedastic intervals. All of the results are illustrated using simulated and real time series with stochastic levels.

Suggested Citation

  • Pellegrini, Santiago & Ruiz, Esther & Espasa, Antoni, 2011. "Prediction intervals in conditionally heteroscedastic time series with stochastic components," International Journal of Forecasting, Elsevier, vol. 27(2), pages 308-319.
  • Handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:308-319
    DOI: 10.1016/j.ijforecast.2010.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207010000919
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Doornik, Jurgen A. & Ooms, Marius, 2008. "Multimodality in GARCH regression models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 432-448.
    2. Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
    3. James Payne, 2009. "Inflation targeting and the inflation-inflation uncertainty relationship: evidence from Thailand," Applied Economics Letters, Taylor & Francis Journals, vol. 16(3), pages 233-238.
    4. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    5. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-389, October.
    6. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    7. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    8. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    9. Pellegrini, Santiago & Ruiz, Esther & Espasa, Antoni, 2010. "Conditionally heteroscedastic unobserved component models and their reduced form," Economics Letters, Elsevier, vol. 107(2), pages 88-90, May.
    10. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    11. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    12. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:308-319. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.