Prediction intervals in conditionally heteroscedastic time series with stochastic components
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2010.05.007
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Pellegrini, Santiago & Ruiz, Esther & Espasa, Antoni, 2011. "Prediction intervals in conditionally heteroscedastic time series with stochastic components," International Journal of Forecasting, Elsevier, vol. 27(2), pages 308-319, April.
References listed on IDEAS
- Doornik, Jurgen A. & Ooms, Marius, 2008.
"Multimodality in GARCH regression models,"
International Journal of Forecasting, Elsevier, vol. 24(3), pages 432-448.
- Jurgen A. Doornik & Marius Ooms, 2003. "Multimodality in the GARCH Regression Model," Economics Papers 2003-W20, Economics Group, Nuffield College, University of Oxford.
- Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
- Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
- James Payne, 2009. "Inflation targeting and the inflation-inflation uncertainty relationship: evidence from Thailand," Applied Economics Letters, Taylor & Francis Journals, vol. 16(3), pages 233-238.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Pellegrini, Santiago & Ruiz, Esther & Espasa, Antoni, 2010. "Conditionally heteroscedastic unobserved component models and their reduced form," Economics Letters, Elsevier, vol. 107(2), pages 88-90, May.
- Broto Carmen & Ruiz Esther, 2009.
"Testing for Conditional Heteroscedasticity in the Components of Inflation,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
- Carmen Broto & Esther Ruiz, 2008. "Testing for conditional heteroscedasticity in the components of inflation," Working Papers 0812, Banco de España.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178, Decembrie.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, Decembrie.
- A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
- James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-389, October.
- Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christian Francq & Jean-Michel Zakoïan, 2013.
"Optimal predictions of powers of conditionally heteroscedastic processes,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
- Francq, Christian & Zakoian, Jean-Michel, 2010. "Optimal predictions of powers of conditionally heteroskedastic processes," MPRA Paper 22155, University Library of Munich, Germany.
- Christan Francq & Jean-Michel Zakoian, 2012. "Optimal Predictions of Powers of Conditionally Heteroskedastic Processes," Working Papers 2012-17, Center for Research in Economics and Statistics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rodríguez, Alejandro & Ruiz, Esther, 2012.
"Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 62-74, January.
- Rodríguez, Alejandro & Ruiz Ortega, Esther, 2010. "Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters," DES - Working Papers. Statistics and Econometrics. WS ws100301, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Broto Carmen & Ruiz Esther, 2009.
"Testing for Conditional Heteroscedasticity in the Components of Inflation,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
- Carmen Broto & Esther Ruiz, 2008. "Testing for conditional heteroscedasticity in the components of inflation," Working Papers 0812, Banco de España.
- Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
- Petrella, Ivan & Venditti, Fabrizio & Delle Monache, Davide, 2016. "Adaptive state space models with applications to the business cycle and financial stress," CEPR Discussion Papers 11599, C.E.P.R. Discussion Papers.
- Broto, Carmen, 2011.
"Inflation targeting in Latin America: Empirical analysis using GARCH models,"
Economic Modelling, Elsevier, vol. 28(3), pages 1424-1434, May.
- Carmen Broto, 2008. "Inflation targeting in Latin America: Empirical analysis using GARCH models," Working Papers 0826, Banco de España.
- García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2011. "Forecasting electricity prices and their volatilities using Unobserved Components," Energy Economics, Elsevier, vol. 33(6), pages 1227-1239.
- Drew Creal & Siem Jan Koopman & André Lucas, 2008.
"A General Framework for Observation Driven Time-Varying Parameter Models,"
Tinbergen Institute Discussion Papers
08-108/4, Tinbergen Institute.
- Drew Creal & Siem Jan Koopman & Andre Lucas, 2009. "A General Framework for Observation Driven Time-Varying Parameter Models," Global COE Hi-Stat Discussion Paper Series gd08-038, Institute of Economic Research, Hitotsubashi University.
- García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2013. "Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities," Applied Energy, Elsevier, vol. 101(C), pages 363-375.
- Charles S. Bos & Siem Jan Koopman, 2010. "Models with Time-varying Mean and Variance: A Robust Analysis of U.S. Industrial Production," Tinbergen Institute Discussion Papers 10-017/4, Tinbergen Institute.
- Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
- Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
- Philipp Adämmer & Martin T. Bohl, 2018. "Price discovery dynamics in European agricultural markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 549-562, May.
- Roberto Leon-Gonzalez & Blessings Majoni, 2023.
"Exact Likelihood for Inverse Gamma Stochastic Volatility Models,"
GRIPS Discussion Papers
23-07, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez & Blessings Majon, 2024. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 24-03, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," Working Paper series 23-11, Rimini Centre for Economic Analysis.
- Viv B. Hall & Peter Thomson, 2021.
"Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
- Viv B Hall & Peter Thomson, 2020. "Does Hamilton's OLS Regression Provide a Better "Alternative" to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," CAMA Working Papers 2020-71, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hall, Viv B & Thomson, Peter, 2020. "Does Hamilton’s OLS regression provide a “better alternative” to the Hodrick-Prescott filter? A New Zealand Business Cycle Perspective," Working Paper Series 21070, Victoria University of Wellington, School of Economics and Finance.
- Luis Uzeda, 2022.
"State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models,"
Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53,
Emerald Group Publishing Limited.
- Luis Uzeda, 2016. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," ANU Working Papers in Economics and Econometrics 2016-632, Australian National University, College of Business and Economics, School of Economics.
- Luis Uzeda, 2018. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Staff Working Papers 18-14, Bank of Canada.
- Tommaso Proietti & Alessandra Luati, 2013.
"Maximum likelihood estimation of time series models: the Kalman filter and beyond,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362,
Edward Elgar Publishing.
- Luati, Alessandra & Proietti, Tommaso, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Working Papers 2012_02, University of Sydney Business School, Discipline of Business Analytics.
- Tommaso, Proietti & Alessandra, Luati, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," MPRA Paper 39600, University Library of Munich, Germany.
- Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2014.
"When long memory meets the Kalman filter: A comparative study,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
- Stefano Grassi & Paolo Santucci de Magistris, 2011. "When Long Memory Meets the Kalman Filter: A Comparative Study," CREATES Research Papers 2011-14, Department of Economics and Business Economics, Aarhus University.
- Jacek Kwiatkowski, 2010. "Unobserved Component Model for Forecasting Polish Inflation," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 10, pages 121-129.
- Bräuning, Falk & Koopman, Siem Jan, 2014.
"Forecasting macroeconomic variables using collapsed dynamic factor analysis,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
- Falk Brauning & Siem Jan Koopman, 2012. "Forecasting Macroeconomic Variables using Collapsed Dynamic Factor Analysis," Tinbergen Institute Discussion Papers 12-042/4, Tinbergen Institute.
More about this item
Keywords
ARIMA-GARCH models; Local level model; Nonlinear time series; State space models; Unobserved component models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:308-319. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.