IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Testing for Leverage Effect in Financial Returns

  • Christophe Chorro

    ()

    (CES - Centre d'économie de la Sorbonne - CNRS : UMR8174 - Université Paris I - Panthéon-Sorbonne)

  • Dominique Guegan

    ()

    (CES - Centre d'économie de la Sorbonne - CNRS : UMR8174 - Université Paris I - Panthéon-Sorbonne)

  • Florian Ielpo

    ()

    (Lombard Odier - Lombard Odier Darier Hentsch & Cie)

  • Hanjarivo Lalaharison

    ()

    (CES - Centre d'économie de la Sorbonne - CNRS : UMR8174 - Université Paris I - Panthéon-Sorbonne)

This article questions the empirical usefulness of leverage effects to describe the dynamics of equity returns. Using a recursive estimation scheme that accurately disentangles the asymmetry coming from the conditional distribution of returns and the asymmetry that is related to the past return to volatility component in GARCH models, we test for the statistical significance of the latter. Relying on both in and out of sample tests we consistently find a weak contribution of leverage effect over the past 25 years of S&P 500 returns, casting light on the importance of the conditional distribution in time series models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://halshs.archives-ouvertes.fr/docs/00/97/39/22/PDF/14022.pdf
Download Restriction: no

Paper provided by HAL in its series Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) with number halshs-00973922.

as
in new window

Length:
Date of creation: Feb 2014
Date of revision:
Handle: RePEc:hal:cesptp:halshs-00973922
Note: View the original document on HAL open archive server: http://halshs.archives-ouvertes.fr/halshs-00973922
Contact details of provider: Web page: http://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Wintenberger, Olivier, 2013. "Continuous invertibility and stable QML estimation of the EGARCH(1,1) model," MPRA Paper 46027, University Library of Munich, Germany.
  2. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2009. "Martingalized historical approach for option pricing," Documents de travail du Centre d'Economie de la Sorbonne 09021, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  3. Timo Terasvirta & Zhenfang Zhao, 2011. "Stylized facts of return series, robust estimates and three popular models of volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 67-94.
  4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  5. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
  6. Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," CREATES Research Papers 2008-30, School of Economics and Management, University of Aarhus.
  7. Hansen, Bruce E, 1992. "The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages S61-82, Suppl. De.
  8. Fulvio Corsi & Roberto Ren�, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
  9. Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.
  10. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
  11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  12. Christophe Chorro & Dominique Guégan & Florian Ielpo, 2012. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1079-1094, April.
  13. John Y. Campbell & Ludger Hentschel, 1991. "No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," NBER Working Papers 3742, National Bureau of Economic Research, Inc.
  14. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-53, December.
  15. Alexandru Badescu & Robert J. Elliott & Reg Kulperger & Jarkko Miettinen & Tak Kuen Siu, 2011. "A Comparison Of Pricing Kernels For Garch Option Pricing With Generalized Hyperbolic Distributions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(05), pages 669-708.
  16. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
  17. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  18. Wu, Guojun, 2001. "The Determinants of Asymmetric Volatility," Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 837-59.
  19. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  20. Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2011. "Option pricing with discrete time jump processes," Documents de travail du Centre d'Economie de la Sorbonne 11037, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  21. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  22. Vedat Akgiray & G. Geoffrey Booth, 1987. "Compound Distribution Models Of Stock Returns: An Empirical Comparison," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 10(3), pages 269-280, 09.
  23. Kon, Stanley J, 1984. " Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-65, March.
  24. Geert Bekaert & Guojun Wu, 1997. "Asymmetric Volatility and Risk in Equity Markets," NBER Working Papers 6022, National Bureau of Economic Research, Inc.
  25. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  26. Francq, Christian & Wintenberger, Olivier & Zakoian, Jean-Michel, 2012. "Garch models without positivity constraints: exponential or log garch?," MPRA Paper 41373, University Library of Munich, Germany.
  27. Bandi, Federico M. & Renò, Roberto, 2012. "Time-varying leverage effects," Journal of Econometrics, Elsevier, vol. 169(1), pages 94-113.
  28. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Martingalized Historical approach for Option Pricing," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00437927, HAL.
  29. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  30. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  31. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
  32. Duffee, Gregory R., 1995. "Stock returns and volatility A firm-level analysis," Journal of Financial Economics, Elsevier, vol. 37(3), pages 399-420, March.
  33. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
  34. José Curto & José Pinto & Gonçalo Tavares, 2009. "Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions," Statistical Papers, Springer, vol. 50(2), pages 311-321, March.
  35. repec:hal:journl:halshs-00437927 is not listed on IDEAS
  36. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-33, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00973922. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.