IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1909.08662.html
   My bibliography  Save this paper

Does the leverage effect affect the return distribution?

Author

Listed:
  • Dangxing Chen

Abstract

The leverage effect refers to the generally negative correlation between the return of an asset and the changes in its volatility. There is broad agreement in the literature that the effect should be present for theoretical reasons, and it has been consistently found in empirical work. However, a few papers have pointed out a puzzle: the return distributions of many assets do not appear to be affected by the leverage effect. We analyze the determinants of the return distribution and find that the impact of the leverage effect comes primarily from an interaction between the leverage effect and the mean-reversion effect. When the leverage effect is large and the mean-reversion effect is small, then the interaction exerts a strong effect on the return distribution. However, if the mean-reversion effect is large, even a large leverage effect has little effect on the return distribution. To better understand the impact of the interaction effect, we propose an indirect method to measure it. We apply our methodology to empirical data and find that the S&P 500 data exhibits a weak interaction effect, and consequently its returns distribution is little impacted by the leverage effect. Furthermore, the interaction effect is closely related to the size factor: small firms tend to have a strong interaction effect and large firms tend to have a weak interaction effect.

Suggested Citation

  • Dangxing Chen, 2019. "Does the leverage effect affect the return distribution?," Papers 1909.08662, arXiv.org, revised Sep 2019.
  • Handle: RePEc:arx:papers:1909.08662
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1909.08662
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Rémy Chicheportiche & Jean-Philippe Bouchaud, 2011. "Goodness-of-Fit tests with Dependent Observations," Post-Print hal-00621061, HAL.
    2. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    3. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    4. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    5. Chorro, Christophe & Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2018. "Testing for leverage effects in the returns of US equities," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 290-306.
    6. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    7. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    8. Bandi, Federico M. & Renò, Roberto, 2012. "Time-varying leverage effects," Journal of Econometrics, Elsevier, vol. 169(1), pages 94-113.
    9. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    10. Danielsson, Jon & Zigrand, Jean-Pierre, 2006. "On time-scaling of risk and the square-root-of-time rule," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
    11. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    12. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    13. Remy Chicheportiche & Jean-Philippe Bouchaud, 2011. "Goodness-of-Fit tests with Dependent Observations," Papers 1106.3016, arXiv.org, revised Aug 2011.
    14. Joseph Abate & Ward Whitt, 1995. "Numerical Inversion of Laplace Transforms of Probability Distributions," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 36-43, February.
    15. Bonato, Matteo, 2011. "Robust estimation of skewness and kurtosis in distributions with infinite higher moments," Finance Research Letters, Elsevier, vol. 8(2), pages 77-87, June.
    16. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.08662. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.