IDEAS home Printed from
   My bibliography  Save this paper

Estimating confidence regions over bounded domains


  • Eklund, Bruno

    () (Dept. of Economic Statistics, Stockholm School of Economics)


Estimating a density function over a bounded domain can be very complicated and resulting in an unsatisfactory or unrealistic density estimate. In many cases a one-to-one transformation can be applied to the considered data set, but there are also situations where such a unique transformation may not exist. This paper proposes a method to estimate confidence regions over bounded domains when a one-to-one transformation either does not exist or its existence is difficult to verify. By taking into account parameter restrictions of a underlying model, a nonlinear grid can be constructed, over which the density function can be estimated. The method is illustrated by applying it to the kurtosis/first-order autocorrelation of squared observations of the GARCH(1,1) model.

Suggested Citation

  • Eklund, Bruno, 2003. "Estimating confidence regions over bounded domains," SSE/EFI Working Paper Series in Economics and Finance 548, Stockholm School of Economics.
  • Handle: RePEc:hhs:hastef:0548

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    1. Teräsvirta, Timo, 1996. "Two Stylized Facts and the Garch (1,1) Model," SSE/EFI Working Paper Series in Economics and Finance 96, Stockholm School of Economics.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Tim Ramsay, 2002. "Spline smoothing over difficult regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 307-319.
    4. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Pascual, Lorenzo & Ruiz, Esther & Fresoli, Diego, 2011. "Bootstrap forecast of multivariate VAR models without using the backward representation," DES - Working Papers. Statistics and Econometrics. WS ws113426, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Timo Terasvirta & Zhenfang Zhao, 2011. "Stylized facts of return series, robust estimates and three popular models of volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 67-94.
    3. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.
    4. Ane, Thierry, 2006. "An analysis of the flexibility of Asymmetric Power GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1293-1311, November.

    More about this item


    Kernel estimation; nonlinear grid; GARCH model; highest density region;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0548. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helena Lundin). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.