IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/33593.html
   My bibliography  Save this paper

When A Factor Is Measured with Error: The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Factor Models

Author

Listed:
  • Prono, Todd

Abstract

A new method is proposed for estimating linear triangular models, where identification results from the structural errors following a bivariate and diagonal GARCH(1,1) process. The associated estimator is a GMM estimator shown to have the usual √T-asymptotics. A Monte Carlo study of the estimator is provided as is an empirical application of estimating market betas from the CAPM. These market beta estimates are found to be statistically distinct from their OLS counterparts and to display expanded cross-sectional variation, the latter feature offering promise for their ability to provide improved pricing of cross-sectional expected returns.

Suggested Citation

  • Prono, Todd, 2011. "When A Factor Is Measured with Error: The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Factor Models," MPRA Paper 33593, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:33593
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/33593/1/MPRA_paper_33593.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
    2. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    3. Roberto Rigobon & Brian Sack, 2003. "Measuring The Reaction of Monetary Policy to the Stock Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(2), pages 639-669.
    4. Arthur Lewbel, 2012. "Using Heteroscedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 67-80.
    5. J. Ginger Meng & Gang Hu & Jushan Bai, 2011. "Olive: A Simple Method For Estimating Betas When Factors Are Measured With Error," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 34(1), pages 27-60, March.
    6. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    7. Jagannathan, Ravi & Wang, Zhenyu, 1996. "The Conditional CAPM and the Cross-Section of Expected Returns," Journal of Finance, American Finance Association, vol. 51(1), pages 3-53, March.
    8. Lewellen, Jonathan & Nagel, Stefan, 2006. "The conditional CAPM does not explain asset-pricing anomalies," Journal of Financial Economics, Elsevier, vol. 82(2), pages 289-314, November.
    9. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    10. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    11. Sentana, Enrique & Fiorentini, Gabriele, 2001. "Identification, estimation and testing of conditionally heteroskedastic factor models," Journal of Econometrics, Elsevier, vol. 102(2), pages 143-164, June.
    12. Tim Bollerslev, 1988. "On The Correlation Structure For The Generalized Autoregressive Conditional Heteroskedastic Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(2), pages 121-131, March.
    13. Kristensen, Dennis & Linton, Oliver, 2006. "A Closed-Form Estimator For The Garch(1,1) Model," Econometric Theory, Cambridge University Press, vol. 22(2), pages 323-337, April.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    16. Richard T. Baillie & Huimin Chung, 2001. "Estimation of GARCH Models from the Autocorrelations of the Squares of a Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 631-650, November.
    17. Whitney K. Newey & Frank Windmeijer, 2009. "Generalized Method of Moments With Many Weak Moment Conditions," Econometrica, Econometric Society, vol. 77(3), pages 687-719, May.
    18. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    19. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    20. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    21. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    22. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    23. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    24. Todd Prono, 2008. "GARCH-based identification and estimation of triangular systems," Supervisory Research and Analysis Working Papers QAU08-4, Federal Reserve Bank of Boston.
    25. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(3), pages 458-467, December.
    26. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    27. Rummery, Sarah & Vella, Francis & Verbeek, Marno, 1999. "Estimating the returns to education for Australian youth via rank-order instrumental variables," Labour Economics, Elsevier, vol. 6(4), pages 491-507, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd Prono, 2008. "GARCH-based identification and estimation of triangular systems," Supervisory Research and Analysis Working Papers QAU08-4, Federal Reserve Bank of Boston.
    2. Todd, Prono, 2009. "Simple, Skewness-Based GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 30994, University Library of Munich, Germany, revised 30 Jul 2011.
    3. Sebastien Valeyre & Sofiane Aboura & Denis Grebenkov, 2019. "The Reactive Beta Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(1), pages 71-113, March.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    5. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    6. Prono, Todd, 2015. "Market proxies as factors in linear asset pricing models: Still living with the roll critique," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 36-53.
    7. Todd Prono, 2009. "Market proxies, correlation, and relative mean-variance efficiency: still living with the roll critique," Supervisory Research and Analysis Working Papers QAU09-3, Federal Reserve Bank of Boston.
    8. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    10. repec:bgu:wpaper:0608 is not listed on IDEAS
    11. Hafner, Christian M. & Preminger, Arie, 2009. "Asymptotic Theory For A Factor Garch Model," Econometric Theory, Cambridge University Press, vol. 25(2), pages 336-363, April.
    12. Morelli, David, 2011. "Joint conditionality in testing the beta-return relationship: Evidence based on the UK stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(1), pages 1-13, February.
    13. Todd Prono, 2006. "GARCH-based identification of triangular systems with an application to the CAPM: still living with the roll critique," Working Papers 07-1, Federal Reserve Bank of Boston.
    14. Lim, G.C., 2005. "Currency risk in excess equity returns: a multi time-varying beta approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(3), pages 189-207, July.
    15. Smith, Daniel R., 2007. "Conditional coskewness and asset pricing," Journal of Empirical Finance, Elsevier, vol. 14(1), pages 91-119, January.
    16. Bali, Turan G., 2008. "The intertemporal relation between expected returns and risk," Journal of Financial Economics, Elsevier, vol. 87(1), pages 101-131, January.
    17. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    18. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    19. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    20. Lukáš Frýd, 2018. "Asymetrie během finančních krizí: asymetrická volatilita převyšuje důležitost asymetrické korelace [Asymmetry of Financial Time Series During the Financial Crisis: Asymmetric Volatility Outperforms," Politická ekonomie, Prague University of Economics and Business, vol. 2018(3), pages 302-329.
    21. Attiya Yasmeen Javid, 2000. "Alternative Capital Asset Pricing Models: A Review of Theory and Evidence," PIDE Research Report 2000:3, Pakistan Institute of Development Economics.

    More about this item

    Keywords

    Measurement error; triangular models; factor models; heteroskedasticity; identification; many moments; GMM;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:33593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.