IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/33183.html
   My bibliography  Save this paper

Olive: a simple method for estimating betas when factors are measured with error

Author

Listed:
  • Meng, Ginger
  • Hu, Gang
  • Bai, Jushan

Abstract

We propose a simple and intuitive method for estimating betas when factors are measured with error: ordinary least squares instrumental variable estimator (OLIVE). OLIVE performs well when the number of instruments becomes large, while the performance of conventional instrumental variable methods becomes poor or even infeasible. In an empirical application, OLIVE beta estimates improve R-squared significantly. More importantly, our results help resolve two puzzling findings in the prior literature: first, the sign of average risk premium on the beta for market return changes from negative to positive; second, the estimated value of average zero-beta rate is no longer too high.

Suggested Citation

  • Meng, Ginger & Hu, Gang & Bai, Jushan, 2007. "Olive: a simple method for estimating betas when factors are measured with error," MPRA Paper 33183, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:33183
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/33183/1/MPRA_paper_33183.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wayne E. Ferson & Campbell R. Harvey, 1999. "Conditioning Variables and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 54(4), pages 1325-1360, August.
    2. Jagannathan, Ravi & Wang, Zhenyu, 1996. "The Conditional CAPM and the Cross-Section of Expected Returns," Journal of Finance, American Finance Association, vol. 51(1), pages 3-53, March.
    3. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    4. Gregory Connor and Robert A. Korajczyk., 1988. "The Attributes, Behavior and Performance of U.S. Mutual Funds," Research Program in Finance Working Papers 181, University of California at Berkeley.
    5. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    6. Doran, Howard E. & Schmidt, Peter, 2006. "GMM estimators with improved finite sample properties using principal components of the weighting matrix, with an application to the dynamic panel data model," Journal of Econometrics, Elsevier, vol. 133(1), pages 387-409, July.
    7. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    8. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    9. Pal, Manoranjan, 1980. "Consistent moment estimators of regression coefficients in the presence of errors in variables," Journal of Econometrics, Elsevier, vol. 14(3), pages 349-364, December.
    10. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    11. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, Decembrie.
    12. Martin Lettau & Sydney Ludvigson, 2001. "Resurrecting the (C)CAPM: A Cross-Sectional Test When Risk Premia Are Time-Varying," Journal of Political Economy, University of Chicago Press, vol. 109(6), pages 1238-1287, December.
    13. Ferson, Wayne E. & Sarkissian, Sergei & Simin, Timothy, 2008. "Asset Pricing Models with Conditional Betas and Alphas: The Effects of Data Snooping and Spurious Regression," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(2), pages 331-353, June.
    14. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    15. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    16. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    17. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    18. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    19. Jones, Christopher S., 2001. "Extracting factors from heteroskedastic asset returns," Journal of Financial Economics, Elsevier, vol. 62(2), pages 293-325, November.
    20. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    21. Kim, Dongcheol, 1995. "The Errors in the Variables Problem in the Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 50(5), pages 1605-1634, December.
    22. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    23. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    24. Shanken, Jay, 1992. "On the Estimation of Beta-Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 5(1), pages 1-33.
    25. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    26. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    27. Coen, Alain & Racicot, Francois-Eric, 2007. "Capital asset pricing models revisited: Evidence from errors in variables," Economics Letters, Elsevier, vol. 95(3), pages 443-450, June.
    28. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    29. Ferson, Wayne E. & Foerster, Stephen R., 1994. "Finite sample properties of the generalized method of moments in tests of conditional asset pricing models," Journal of Financial Economics, Elsevier, vol. 36(1), pages 29-55, August.
    30. Cochrane, John H, 1996. "A Cross-Sectional Test of an Investment-Based Asset Pricing Model," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 572-621, June.
    31. Ravi Jagannathan & Zhenyu Wang, 1998. "An Asymptotic Theory for Estimating Beta-Pricing Models Using Cross-Sectional Regression," Journal of Finance, American Finance Association, vol. 53(4), pages 1285-1309, August.
    32. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    33. Michelle L. Barnes & Anthony W. Hughes, 2002. "A quantile regression analysis of the cross section of stock market returns," Working Papers 02-2, Federal Reserve Bank of Boston.
    34. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    35. Ng, Serena, 2006. "Testing Cross-Section Correlation in Panel Data Using Spacings," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 12-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastien Valeyre & Sofiane Aboura & Denis Grebenkov, 2019. "The Reactive Beta Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(1), pages 71-113, March.
    2. Prono, Todd, 2011. "When A Factor Is Measured with Error: The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Factor Models," MPRA Paper 33593, University Library of Munich, Germany.
    3. Sebastien Valeyre, 2020. "Refined model of the covariance/correlation matrix between securities," Papers 2001.08911, arXiv.org.
    4. Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
    5. Christian Calmès & Denis Cormier & Francois Éric Racicot & Raymond Théoret, 2012. "Firms' Accruals and Tobin’s q," RePAd Working Paper Series UQO-DSA-wp032012, Département des sciences administratives, UQO.
    6. Christian Calm¨¨s & Raymond Th¨¦oret, 2016. "The Asymmetric Impact of Portfolio Mix on Bank Performance over the Business Cycle: U.S. and Canadian Evidence," Review of Economics & Finance, Better Advances Press, Canada, vol. 6, pages 57-74, February.
    7. Sebastien Valeyre & Denis S. Grebenkov & Sofiane Aboura, 2019. "The Reactive Beta Model," Papers 1911.00919, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    2. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    3. Olga Klinkowska & Angelica Gonzalez & Abhay Abhyankar, 2012. "Salvaging the C-CAPM: Currency Carry Trade Risk Premia and Conditioning Information," 2012 Meeting Papers 56, Society for Economic Dynamics.
    4. repec:gnv:wpaper:unige:76321 is not listed on IDEAS
    5. Boons, M.F., 2014. "Sorting out commodity and macroeconomic risk in expected stock returns," Other publications TiSEM 1ebdac58-bf37-499d-8835-1, Tilburg University, School of Economics and Management.
    6. Vassalou, Maria & Li, Qing & Xing, Yuhang, 2001. "An Investment-Growth Asset Pricing Model," CEPR Discussion Papers 3058, C.E.P.R. Discussion Papers.
    7. Martin Lettau & Sydney Ludvigson, 2001. "Resurrecting the (C)CAPM: A Cross-Sectional Test When Risk Premia Are Time-Varying," Journal of Political Economy, University of Chicago Press, vol. 109(6), pages 1238-1287, December.
    8. Roussanov, Nikolai, 2014. "Composition of wealth, conditioning information, and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 111(2), pages 352-380.
    9. Raymond Kan & Cesare Robotti & Jay Shanken, 2013. "Pricing Model Performance and the Two‐Pass Cross‐Sectional Regression Methodology," Journal of Finance, American Finance Association, vol. 68(6), pages 2617-2649, December.
    10. Stefano Giglio & Dacheng Xiu, 2017. "Inference on Risk Premia in the Presence of Omitted Factors," NBER Working Papers 23527, National Bureau of Economic Research, Inc.
    11. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    12. Adrian, Tobias & Crump, Richard K. & Moench, Emanuel, 2015. "Regression-based estimation of dynamic asset pricing models," Journal of Financial Economics, Elsevier, vol. 118(2), pages 211-244.
    13. Kang, Jangkoo & Kim, Tong Suk & Lee, Changjun & Min, Byoung-Kyu, 2011. "Macroeconomic risk and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3158-3173.
    14. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    15. Sainan Jin & Liangjun Su & Yonghui Zhang, 2015. "Nonparametric testing for anomaly effects in empirical asset pricing models," Empirical Economics, Springer, vol. 48(1), pages 9-36, February.
    16. Ravi Jagannathan & Zhenyu Wang, 2002. "Empirical Evaluation of Asset‐Pricing Models: A Comparison of the SDF and Beta Methods," Journal of Finance, American Finance Association, vol. 57(5), pages 2337-2367, October.
    17. Boguth, Oliver & Carlson, Murray & Fisher, Adlai & Simutin, Mikhail, 2011. "Conditional risk and performance evaluation: Volatility timing, overconditioning, and new estimates of momentum alphas," Journal of Financial Economics, Elsevier, vol. 102(2), pages 363-389.
    18. Adrian, Tobias & Franzoni, Francesco, 2009. "Learning about beta: Time-varying factor loadings, expected returns, and the conditional CAPM," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 537-556, September.
    19. Kim, Dongcheol & Kim, Tong Suk & Min, Byoung-Kyu, 2011. "Future labor income growth and the cross-section of equity returns," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 67-81, January.
    20. Tyler Muir & Erkko Etula & Tobias Adrian, 2011. "Broker-Dealer Leverage and the Cross-Section of Stock Returns," 2011 Meeting Papers 1448, Society for Economic Dynamics.
    21. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "Estimation of large dimensional conditional factor models in finance," Working Papers unige:125031, University of Geneva, Geneva School of Economics and Management.

    More about this item

    Keywords

    betas; factor analysis; GMM; FIML; measurement error;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:33183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.