IDEAS home Printed from
   My bibliography  Save this article

Finite sample properties of a QML estimator of stochastic volatility models with long memory


  • Perez, Ana
  • Ruiz, Esther


In this paper, we analyse the finite sample properties of a Quasi-Maximum Likelihood (QML) estimator of Long Memory Stochastic Volatility models based on the Whittle approximation of the Gaussian likelihood in the frequency domain. We extend previous studies by including in our Monte Carlo design all the parameters in the model and some more realistic cases. We show that for the parameter values usually encountered in practice, the properties of this estimator are such that inference is not reliable unless the sample size is extremely large. We also discuss a problem of nonidentification in the AutoRegressive Long Memory Stochastic Volatility Model when the volatility has a unit root and we show up its effect on the small sample properties of the QML estimators. The paper finishes with the empirical analysis of daily observations of the IBEX35 index of the Madrid Stock Exchange as an illustration of the problems faced when using this estimator with real time series.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Perez, Ana & Ruiz, Esther, 2001. "Finite sample properties of a QML estimator of stochastic volatility models with long memory," Economics Letters, Elsevier, vol. 70(2), pages 157-164, February.
  • Handle: RePEc:eee:ecolet:v:70:y:2001:i:2:p:157-164

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    2. Chong, Terence Tai-leung & Lui, Gilbert Chiu-sing, 1999. "Estimating the fractionally integrated process in the presence of measurement errors," Economics Letters, Elsevier, vol. 63(3), pages 285-294, June.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    5. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    7. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    8. Smith, Anthony A, Jr & Sowell, Fallaw & Zin, Stanley E, 1997. "Fractional Integration with Drift: Estimation in Small Samples," Empirical Economics, Springer, vol. 22(1), pages 103-116.
    9. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    10. Crato, Nuno & de Lima, Pedro J. F., 1994. "Long-range dependence in the conditional variance of stock returns," Economics Letters, Elsevier, vol. 45(3), pages 281-285.
    11. Wright, Jonathan H., 1999. "A new estimator of the fractionally integrated stochastic volatility model," Economics Letters, Elsevier, vol. 63(3), pages 295-303, June.
    12. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    13. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous-time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323.
    14. Cheung, Yin-Wong & Diebold, Francis X., 1994. "On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean," Journal of Econometrics, Elsevier, vol. 62(2), pages 301-316, June.
    15. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    16. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    17. Richard Payne & Marc Henry, 1997. "An Investigation of Long Range Dependence in Intra-Day Foreign Exchange Rate Volatility," FMG Discussion Papers dp264, Financial Markets Group.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
    2. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    3. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
    4. Manabu Asai & Chia-Lin Chang & Michael McAleer, 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Documentos de Trabajo del ICAE 2016-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    5. Ruiz, Esther & Veiga, Helena, 2008. "Modelling long-memory volatilities with leverage effect: A-LMSV versus FIEGARCH," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2846-2862, February.
    6. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    7. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    8. Bhattacharya, Sharad Nath & Bhattacharya, Mousumi, 2013. "Long memory in return structures from developed markets," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).
    9. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    10. Kwan, Wilson & Li, Wai Keung & Li, Guodong, 2012. "On the estimation and diagnostic checking of the ARFIMA–HYGARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3632-3644.
    11. Ruiz Esther & Pérez Ana, 2012. "Maximally Autocorrelated Power Transformations: A Closer Look at the Properties of Stochastic Volatility Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-33, September.
    12. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    13. repec:sbe:breart:v:27:y:2007:i:2:a:1526 is not listed on IDEAS
    14. Grané, A. & Veiga, H., 2008. "Accurate minimum capital risk requirements: A comparison of several approaches," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2482-2492, November.
    15. Trino-Manuel Ñíguez, 2003. "Volatility And Var Forecasting For The Ibex-35 Stock-Return Index Using Figarch-Type Processes And Different Evaluation Criteria," Working Papers. Serie AD 2003-33, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:70:y:2001:i:2:p:157-164. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.