IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v32y2008i11p2482-2492.html
   My bibliography  Save this article

Accurate minimum capital risk requirements: A comparison of several approaches

Author

Listed:
  • Grané, A.
  • Veiga, H.

Abstract

In this paper we estimate, for several investment horizons, minimum capital risk requirements for short and long positions, using the unconditional distribution of three daily indexes futures returns and a set of short and long memory stochastic volatility and GARCH-type models. We consider the possibility that errors follow a t-Student distribution in order to capture the kurtosis of the returns' series. The results suggest that accurate modelling of extreme observations obtained for long and short trading investment positions is possible with an autoregressive stochastic volatility model. Moreover, modelling futures returns with a long memory stochastic volatility model produces, in general, excessive volatility persistence, and consequently, leads to large minimum capital risk requirement estimates. Finally, the models' predictive ability is assessed with the help of out-of-sample conditional tests.

Suggested Citation

  • Grané, A. & Veiga, H., 2008. "Accurate minimum capital risk requirements: A comparison of several approaches," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2482-2492, November.
  • Handle: RePEc:eee:jbfina:v:32:y:2008:i:11:p:2482-2492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(08)00096-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    2. Perez, Ana & Ruiz, Esther, 2001. "Finite sample properties of a QML estimator of stochastic volatility models with long memory," Economics Letters, Elsevier, vol. 70(2), pages 157-164, February.
    3. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    4. Lehar, Alfred & Scheicher, Martin & Schittenkopf, Christian, 2002. "GARCH vs. stochastic volatility: Option pricing and risk management," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 323-345, March.
    5. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    6. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    7. Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
    8. repec:cep:stiecm:/1993/268 is not listed on IDEAS
    9. Baillie, Richard T. & Bollerslev, Tim, 2000. "The forward premium anomaly is not as bad as you think," Journal of International Money and Finance, Elsevier, vol. 19(4), pages 471-488, August.
    10. Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
    11. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    12. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    13. Brooks, C. & Clare, A. D. & Persand, G., 2000. "A word of caution on calculating market-based minimum capital risk requirements," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1557-1574, October.
    14. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    15. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    16. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    17. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    18. Kiefer, Nicholas M. & Salmon, Mark, 1983. "Testing normality in econometric models," Economics Letters, Elsevier, vol. 11(1-2), pages 123-127.
    19. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    20. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
    21. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    22. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
    23. Hyun J. Jin & Darren L. Frechette, 2004. "Fractional Integration in Agricultural Futures Price Volatilities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 432-443.
    24. Hsieh, David A., 1993. "Implications of Nonlinear Dynamics for Financial Risk Management," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 41-64, March.
    25. Andrew C Harvey & N.G. Shephard, 1993. "Estimation and Testing of Stochastic Variance Models," STICERD - Econometrics Paper Series 268, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
    2. Tsai, Ming-Shann & Chen, Lien-Chuan, 2011. "The calculation of capital requirement using Extreme Value Theory," Economic Modelling, Elsevier, vol. 28(1), pages 390-395.
    3. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. José Manuel Cueto & Aurea Grané & Ignacio Cascos, 2020. "Models for Expected Returns with Statistical Factors," JRFM, MDPI, vol. 13(12), pages 1-17, December.
    5. Tsai, Ming-Shann & Chen, Lien-Chuan, 2011. "The calculation of capital requirement using Extreme Value Theory," Economic Modelling, Elsevier, vol. 28(1-2), pages 390-395, January.
    6. José Manuel Cueto & Aurea Grané & Ignacio Cascos, 2021. "How to Explain the Cross-Section of Equity Returns through Common Principal Components," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    7. Kerkhof, Jeroen & Melenberg, Bertrand & Schumacher, Hans, 2010. "Model risk and capital reserves," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 267-279, January.
    8. Sebastian Letmathe & Yuanhua Feng & André Uhde, 2021. "Semiparametric GARCH models with long memory applied to Value at Risk and Expected Shortfall," Working Papers CIE 141, Paderborn University, CIE Center for International Economics.
    9. Cueto, José Manuel, 2019. "Models for expected returns with statistical factors," DES - Working Papers. Statistics and Econometrics. WS 28776, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Cueto, José Manuel, 2021. "How to explain the cross-section of equity returns through Common Principal Components," DES - Working Papers. Statistics and Econometrics. WS 32258, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Aurea Grané & Helena Veiga, 2012. "Asymmetry, realised volatility and stock return risk estimates," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 11(2), pages 147-164, August.
    12. Bretó, Carles & Veiga, Helena, 2011. "Forecasting volatility: does continuous time do better than discrete time?," DES - Working Papers. Statistics and Econometrics. WS ws112518, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurea Grané & Helena Veiga, 2012. "Asymmetry, realised volatility and stock return risk estimates," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 11(2), pages 147-164, August.
    2. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Veiga, Helena, 2007. "The effect of realised volatility on stock returns risk estimates," DES - Working Papers. Statistics and Econometrics. WS ws076316, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. repec:awi:wpaper:0472 is not listed on IDEAS
    7. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    8. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    9. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    10. CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012. "Modelling Long Memory Volatility In Agricultural Commodity Futures Returns," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
    11. Guglielmo Maria Caporale & Luis A. Gil‐Alana & James C. Orlando, 2016. "Linkages Between the US and European Stock Markets: A Fractional Cointegration Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 143-153, April.
    12. Klein, Tony & Walther, Thomas, 2017. "Fast fractional differencing in modeling long memory of conditional variance for high-frequency data," Finance Research Letters, Elsevier, vol. 22(C), pages 274-279.
    13. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    14. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    15. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    16. Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
    17. Onder Buberkoku, 2018. "Examining the Value-at-risk Performance of Fractionally Integrated GARCH Models: Evidence from Energy Commodities," International Journal of Economics and Financial Issues, Econjournals, vol. 8(3), pages 36-50.
    18. González-Pla, Francisco & Lovreta, Lidija, 2019. "Persistence in firm’s asset and equity volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Angelidis, Timotheos & Degiannakis, Stavros, 2007. "Backtesting VaR Models: A Τwo-Stage Procedure," MPRA Paper 96327, University Library of Munich, Germany.
    20. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    21. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:32:y:2008:i:11:p:2482-2492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.