IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Fractional integration with Drift: Estimation in Small Samples

We examine the finite-sample behavior of estimators of the order of integration in a fractionally integrated time-series model. In particular, we compare exact time-domain likelihood estimation to frequency-domain approximate likelihood estimation. We show that over-differencing is of critical importance for time-domain maximum-likelihood estimation in finite samples. Over-differencing moves the differencing parameter (in the over-differenced model) away from the boundary of the parameter space, while at the same time obviating the need to estimate the drift parameter. The two estimators that we compare are asymptotically equivalent. In small samples, however, the time-domain estimator has smaller mean squared error than the frequency-domain estimator. Although the frequency-domain estimator has larger bias than the time-domain estimator for some regions of the parameter bias, it can also have smaller bias. We use a simulation procedure which exploits the approximate linearity of the bias function to reduce the bias in the time-domain estimator.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Carnegie Mellon University, Tepper School of Business in its series GSIA Working Papers with number 22.

in new window

Date of creation:
Handle: RePEc:cmu:gsiawp:22
Contact details of provider: Postal:
Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890

Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cmu:gsiawp:22. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Steve Spear)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.