IDEAS home Printed from https://ideas.repec.org/p/aah/create/2008-35.html
   My bibliography  Save this paper

Bias-reduced estimation of long memory stochastic volatility

Author

Listed:
  • Per Frederiksen
  • Morten Ørregaard Nielsen

    () (School of Economics and Management, University of Aarhus, Denmark and CREATES)

Abstract

We propose to use a variant of the local polynomial Whittle estimator to estimate the memory parameter in volatility for long memory stochastic volatility models with potential nonstation- arity in the volatility process. We show that the estimator is asymptotically normal and capable of obtaining bias reduction as well as a rate of convergence arbitrarily close to the parametric rate, n1=2. A Monte Carlo study is conducted to support the theoretical results, and an analysis of daily exchange rates demonstrates the empirical usefulness of the estimators

Suggested Citation

  • Per Frederiksen & Morten Ørregaard Nielsen, 2008. "Bias-reduced estimation of long memory stochastic volatility," CREATES Research Papers 2008-35, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2008-35
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/08/rp08_35.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
    2. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    3. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous-time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323.
    4. Ray, Bonnie K & Tsay, Ruey S, 2000. "Long-Range Dependence in Daily Stock Volatilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 254-262, April.
    5. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    6. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    7. Eric Ghysels & Andrew Harvey & Éric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    8. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    9. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    10. Haldrup, Niels & Nielsen, Morten Orregaard, 2007. "Estimation of fractional integration in the presence of data noise," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3100-3114, March.
    11. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
    12. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    13. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    14. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    15. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    16. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 445-470.
    17. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    18. Carlos Velasco, 2003. "Gaussian Semi-parametric Estimation of Fractional Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 345-378, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    2. Jensen Mark J., 2016. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.
    3. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
    4. Busch, Marie & Sibbertsen, Philipp, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Hannover Economic Papers (HEP) dp-628, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.

    More about this item

    Keywords

    Bias reduction; local Whittle estimation; long memory stochastic volatility model;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2008-35. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.