IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Asymptotics for duration-driven long range dependent processes

  • Hsieh, Meng-Chen
  • Hurvich, Clifford M.
  • Soulier, Philippe

We consider processes with second order long range dependence resulting from heavy tailed durations. We refer to this phenomenon as duration- driven long range dependence (DDLRD), as opposed to the more widely studied linear long range dependence based on fractional differencing of an $iid$ process. We consider in detail two specific processes having DDLRD, originally presented in Taqqu and Levy (1986), and Parke (1999). For these processes, we obtain the limiting distribution of suitably standardized discrete Fourier transforms (DFTs) and sample autocovariances. At low frequencies, the standardized DFTs converge to a stable law, as do the standardized autocovariances at fixed lags. Finite collections of standardized autocovariances at a fixed set of lags converge to a degenerate distribution. The standardized DFTs at high frequencies converge to a Gaussian law. Our asymptotic results are strikingly similar for the two DDLRD processes studied. We calibrate our asymptotic results with a simulation study which also investigates the properties of the semiparametric log periodogram regression estimator of the memory parameter.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 141 (2007)
Issue (Month): 2 (December)
Pages: 913-949

in new window

Handle: RePEc:eee:econom:v:141:y:2007:i:2:p:913-949
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. William R. Parke, 1999. "What Is Fractional Integration?," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 632-638, November.
  2. Tieslau, Margie A. & Schmidt, Peter & Baillie, Richard T., 1996. "A minimum distance estimator for long-memory processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 249-264.
  3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
  4. Rohit Deo & Meng-Chen Hsieh & Clifford M. Hurvich & Philippe Soulier, 2007. "Long Memory in Nonlinear Processes," Papers 0706.1836,
  5. Chen, Willa W. & Hurvich, Clifford M., 2003. "Semiparametric Estimation of Multivariate Fractional Cointegration," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 629-642, January.
  6. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(01), pages 44-79, February.
  7. Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
  8. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
  9. Chen, Willa W. & Hurvich, Clifford M., 2003. "Estimating fractional cointegration in the presence of polynomial trends," Journal of Econometrics, Elsevier, vol. 117(1), pages 95-121, November.
  10. Chung, Ching-Fan, 2002. "Sample Means, Sample Autocovariances, And Linear Regression Of Stationary Multivariate Long Memory Processes," Econometric Theory, Cambridge University Press, vol. 18(01), pages 51-78, February.
  11. Terrin, Norma & Hurvich, Clifford M., 1994. "An asymptotic Wiener-Itô representation for the low frequency ordinates of the periodogram of a long memory time series," Stochastic Processes and their Applications, Elsevier, vol. 54(2), pages 297-307, December.
  12. Liu, Ming, 2000. "Modeling long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 99(1), pages 139-171, November.
  13. Hurvich, Clifford M. & Soulier, Philippe, 2002. "Testing For Long Memory In Volatility," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1291-1308, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:141:y:2007:i:2:p:913-949. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.