IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v71y1996i1-2p249-264.html
   My bibliography  Save this article

A minimum distance estimator for long-memory processes

Author

Listed:
  • Tieslau, Margie A.
  • Schmidt, Peter
  • Baillie, Richard T.

Abstract

No abstract is available for this item.

Suggested Citation

  • Tieslau, Margie A. & Schmidt, Peter & Baillie, Richard T., 1996. "A minimum distance estimator for long-memory processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 249-264.
  • Handle: RePEc:eee:econom:v:71:y:1996:i:1-2:p:249-264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4076(94)01703-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron D. Smallwood & Paul M. Beaumont, 2002. "An Asymptotic MLE Approach to Modelling Multiple Frequency GARMA Models," Computing in Economics and Finance 2002 285, Society for Computational Economics.
    2. Andersen, Torben G & Bollerslev, Tim, 1997. " Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    3. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    4. Laura Mayoral, 2007. "Minimum distance estimation of stationary and non-stationary ARFIMA processes," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 124-148, March.
    5. Hsieh, Meng-Chen & Hurvich, Clifford M. & Soulier, Philippe, 2007. "Asymptotics for duration-driven long range dependent processes," Journal of Econometrics, Elsevier, pages 913-949.
    6. John Galbraith & Victoria Zinde-Walsh, 2001. "Autoregression-Based Estimators for ARFIMA Models," CIRANO Working Papers 2001s-11, CIRANO.
    7. Wright, Jonathan H., 1999. "A new estimator of the fractionally integrated stochastic volatility model," Economics Letters, Elsevier, vol. 63(3), pages 295-303, June.
    8. Proietti, Tommaso & Luati, Alessandra, 2015. "The generalised autocovariance function," Journal of Econometrics, Elsevier, pages 245-257.
    9. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    10. Chong, Terence Tai-Leung, 2000. "Estimating the differencing parameter via the partial autocorrelation function," Journal of Econometrics, Elsevier, pages 365-381.
    11. Veiga, Helena, 2006. "A two factor long memory stochastic volatility model," DES - Working Papers. Statistics and Econometrics. WS ws061303, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. D. S. Poskitt, 2005. "Autoregressive Approximation in Nonstandard Situations: The Non-Invertible and Fractionally Integrated Cases," Monash Econometrics and Business Statistics Working Papers 16/05, Monash University, Department of Econometrics and Business Statistics.
    13. Chung, Ching-Fan, 2001. "Calculating and analyzing impulse responses for the vector ARFIMA model," Economics Letters, Elsevier, vol. 71(1), pages 17-25, April.
    14. Zevallos, Mauricio & Palma, Wilfredo, 2013. "Minimum distance estimation of ARFIMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 242-256.
    15. Laura Mayoral, 2003. "A New Minimum Distance Estimation Procedure of ARFIMA Processes," Working Papers 100, Barcelona Graduate School of Economics.
    16. Martin, Vance L. & Wilkins, Nigel P., 1999. "Indirect estimation of ARFIMA and VARFIMA models," Journal of Econometrics, Elsevier, pages 149-175.
    17. Laura Mayoral & Juan J. Dolado & Jesús Gonzalo, 2003. "Long-range dependence in Spanish political opinion poll series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(2), pages 137-155.
    18. Jensen, Mark J., 2000. "An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets," Journal of Economic Dynamics and Control, Elsevier, vol. 24(3), pages 361-387, March.
    19. Abdelouahab Bibi & Ahmed Ghezal, 2016. "On periodic time-varying bilinear processes: structure and asymptotic inference," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(3), pages 395-420, August.
    20. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Modified information criteria and selection of long memory time series models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 116-131.
    21. Boudt, Kris & Croux, Christophe & Laurent, Sébastien, 2011. "Robust estimation of intraweek periodicity in volatility and jump detection," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 353-367, March.
    22. Terence Tai-Leung Chong, 2007. "Estimating the Fractionally Integrated Model with a Break in the Differencing Parameter," Economics Bulletin, AccessEcon, vol. 3(67), pages 1-10.
    23. repec:ebl:ecbull:v:3:y:2007:i:67:p:1-10 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:71:y:1996:i:1-2:p:249-264. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.